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1. Ablation Study

To gain further understanding of the proposed dual
self-supervision, we conduct ablation studies for both
of S2ConvSCN-¢; and S?ConvSCN-{5 on all the four
datasets—ORL, COIL20, COIL100 and Extended Yale B.
The experimental results are shown in Table 1, 2, 3, and 4.

Loss ORL COIL20  COIL100
Lo 15.25 7.92 34.94
Lo+ L1 4+ L2(DSC) 14.25 5.65 33.62
Lo+ L1+ L2+ L3 12.75 3.42 31.14
Lo+ L1+ Lo+ Ly 12.25 3.27 28.53
Lo+ Ly + Lo+ L3+ Ly 10.50 2.14 26.67

Table 1. Ablation Study of S2ConvSCN-/; .

Loss ORL COIL20 COIL100
Lo 15.40 7.92 32.63
Lo+ L1 + L2(DSC) 14.25 5.65 30.96
Lo+ L1+ Lo+ L3 12.25 3.15 31.79
Lo+ L1+ Lo+ Ly 12.00 2.75 28.17
Lo+ L1+ Lo+ L3+ Ly 11.25 2.33 27.83

Table 2. Ablation Study of S2ConvSCN-/».

In DSC [1], the combination of the loss Lo + £ + Lo is
used. As a baseline, we also add the experimental results of
using only £ to train the convolutional feature extraction
module.

As could be read, the dual self-supervision does yield
the best performance on all the four datasets. These results
confirm the effectiveness of using the labeling information
from spectral clustering to supervise both the feature extrac-
tion module and the self-expression model.

2. Evaluation on Tradeoff Parameters

To evaluate the performance of using different parame-
ters, we use S2ConvSCN -¢1 as an example and conduct ex-
periments with varying one parameter while keeping other
parameters fixed on dataset Extended YaleB (n = 38). Ex-
perimental results are listed in Fig. 1.
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Figure 1. Performance Evaluation of S?ConvSCN-¢; under Vary-
ing Each Parameter 1, 72,73, 74, and 7 on Extended Yale B
(n = 38).

3. Curves of Loss Functions during Iteration
Period Compared to DSCNet [1]

To compare our proposed S2ConvSCN-/; and DSCNet-
{1, we conduct experiments on Extended Yale B and record
each loss as a curve of the iteration index. Experimental
results are displayed in Fig. 2.

Compared to DSCNet [1], the curves of each loss func-
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No. Subjects 10 subjects 15 subjects 20 subjects 25 subjects 30 subjects 35 subjects 38 subjects

Losses Mean Median | Mean Median | Mean Median | Mean Median | Mean Median | Mean Median | Mean Median
Lo 2.20 1.88 2.41 2.29 2.38 2.34 2.58 2.75 2.89 2.92 3.30 3.28 3.21 3.21
Lo+ L1 + L2(DSC) 223 2.03 2.17 2.03 2.17 2.11 2.53 2.19 2.63 2.81 3.09 3.10 3.33 3.33
Lo+ Ly +Ly+ L3 1.58 1.25 1.63 1.55 1.67 1.57 1.61 1.63 2.74 1.82 2.64 2.65 2.75 2.75
Lo+ L1+ Lo+ Ly 1.32 1.09 1.31 1.30 1.54 1.48 1.48 1.98 1.87 1.61 1.82 1.84 1.92 1.92
Lo+ L1+ Lo+ L3+ Ly 1.18 1.09 1.12 1.14 1.30 1.25 1.29 1.28 1.67 1.72 1.62 1.60 1.52 1.52

Table 3. Ablation Study of S2ConvSCN-/; on Extended Yale B.

No. Subjects 10 subjects 15 subjects 20 subjects 25 subjects 30 subjects 35 subjects 38 subjects

Losses Mean Median | Mean Median | Mean Median | Mean Median | Mean Median | Mean Median | Mean Median
Ly 222 2.03 2.44 2.29 2.38 2.34 2.58 2.75 2.89 2.92 3.34 3.35 3.17 3.17
Lo+ L1 + Lo(DSC) 1.59 1.25 1.69 1.72 1.73 1.80 1.75 1.81 2.07 2.19 2.65 2.64 2.67 2.67
Lo+ L1+ Lo+ L3 1.48 1.25 1.42 1.36 1.66 1.65 1.58 1.60 2.68 1.71 2.15 2.16 2.54 2.54
Lo+ Li+Ly+ Ly 1.18 1.09 1.15 1.14 1.37 1.34 143 1.98 1.99 2.18 222 1.74 1.85 1.85
Lo+ Li+ Lo+ L3+ Ly 1.18 1.09 1.14 1.14 1.31 1.32 1.32 143 1.71 1.77 1.67 1.69 1.56 1.56

Table 4. Ablation Study of S2ConvSCN-/> on Extended Yale B.
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Figure 2. Comparison between DSC-¢; and our S2ConvSCN-¢;
on Extended Yale B (n=10).

tion of our proposed S2ConvSCN-¢; are smoother. The
smoother curves of the loss function during training iter-
ations indicate an improved convergence property, which
is coming from the dual self-supervision. Thus, exploit-
ing the labeling information from spectral clustering to su-
pervise not only the feature extraction module but also the
self-expression model is beneficial to produce better perfor-
mance and also make the training easier.
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