Papers by Alberto Strumia

Physical Science & Biophysics Journal, 2019
We show, by didactical examples, how algorithmic information (coded e.g., into a computer program... more We show, by didactical examples, how algorithmic information (coded e.g., into a computer program) is required to build the structure of an organized system (either simple or complex). Ordered structures can be obtained as attractors both by some dynamics starting from sequential initial conditions (order from order) and by some dynamics starting from random initial conditions (order from chance) provided that a leading algorithmic information is assigned to govern the evolution of the generating process. In absence of information emergence of some ordered structure, like e.g., an organ of a living system is so highly improbable to be impossible in practice. We provide didactical examples of static models of a human heart, each generated starting either from ordered initial conditions, or from random sparse initial conditions, or more realistically by random cellular automata (so that any mother cell is allowed to generate a daughter cell only in a random contiguous location). Significantly, as it was pointed out by Gregory Chaitin, not all algorithmic information can be compressed into a string shorter than the sequence of its original individual code digits (incompressible information string). A question is still open about the DNA and, more generally, any biological information: is it to be considered as a compressible or an incompressible code string? In our example of anatomic human heart model we have treated the sequence of the coordinates of each sphere (roughly modeling a cell) as an uncompressed string, while a compressed program string seems to be able to provide only less realistic models.
Book Publisher International (a part of SCIENCEDOMAIN International), Nov 1, 2022
New Trends in Physical Science Research Vol. 6
Journal of Applied Mathematics and Physics

Journal of High Energy Physics, Gravitation and Cosmology, 2022
We present a simple way to approach the hard problem of quantization of the gravitational field i... more We present a simple way to approach the hard problem of quantization of the gravitational field in four-dimensional space-time, due to non-linearity of the Einstein equations. The difficulty may be overcome when the cosmological constant is non-null. Treating the cosmological contribution as the energy-momentum of vacuum, and representing the metric tensor onto the tetrad of its eigenvectors, the corresponding energy-momentum and, consequently, the Hamiltonian are easily quantized assuming a correspondence rule according to which the eigenvectors are replaced by creation and annihilation operators for the gravitational field. So the geometric Einstein tensor, which is opposite in sign respect to the vacuum energy-momentum (plus the possible known matter one), is also quantized. Physical examples provided by Schwarzschild-De Sitter, Robertson-Walker-De Sitter and Kerr-De Sitter solutions are examined.

Newest Updates in Physical Science Research Vol. 10, 2021
Starting from a previous paper, here improved, we show, by didactical examples, how algorithmic i... more Starting from a previous paper, here improved, we show, by didactical examples, how algorithmic information (coded e.g., into a computer program) is required to build the structure of an organized system (either simple or complex). Ordered structures can be obtained as attractors both by some dynamics starting from sequential initial conditions (order from order) and by some dynamics starting from random initial conditions (order from chance) provided that a leading algorithmic information is assigned to govern the evolution of the generating process. In absence of information emergence of some ordered structure, like e.g., an organ of a living system is so highly improbable to be impossible in practice. We start from didactical examples, arising in mathematics and physics, to arrive to propose static models of a human heart. Systems are generated starting either from ordered initial conditions, or from random sparse initial conditions, or more realistically by random cellular automata (so that any mother cell is allowed to generate a daughter cell only in a random contiguous location). Significantly, as it was pointed out by Gregory Chaitin, not all algorithmic information can be compressed into a string shorter than the sequence of its original individual code digits (incompressible information string). A question is still open about the DNA and, more generally, any biological information: is it to be considered as a compressible or an incompressible code string? In our example of anatomic human heart model we have treated the sequence of the co-ordinates of each sphere (roughly modeling a cell) as an uncompressed string, while a compressed program string seems to be able to provide only less realistic models.

Today's sciences seem to converge all towards very similar foundational questions. Such claim... more Today's sciences seem to converge all towards very similar foundational questions. Such claims, both of epistemological and ontological nature, seem to rediscover, in a new fashion some of the most relevant topics of ancient Greek and Mediaeval philosophy of nature, logic and metaphysics, such as the problem of the relationship between the whole and its parts (non redictionism), the problems of the paradoxes arising from the attempt to conceive the entity like an univocal concept (analogy and analogia entis), the problem of the mind-body relationship and that of an adequate cognitive theory (abstraction and immaterial nature of the mind), the complexity of some physical, chemical and biological systems and global properties arising from information (matter-form theory), etc. Medicine too is involved in some of such relevant questions and cannot avoid to take them into a special account.

Journal of Modern Physics, 2021
Some considerations are presented on the so called “ontological interpretations” of quantum physi... more Some considerations are presented on the so called “ontological interpretations” of quantum physics, starting from a remark by Werner Heisenberg on the relation between the probabilistic character of quantum states and the Aristotelian notion of “potency”. We show how an interesting revival of the original idea by Heisenberg can be found in the recent scientific and epistemological literature, in order to solve some paradoxical aspects emerging within some of the usual interpretations of quantum physics. Moreover a way seems to be open in order to rediscover the role of Aristotelian-Thomistic notion of “analogy” of “causal agents” operating even in the physical world. The “Potency-Act” interpretation of quantum physics appears aside the role of the Aristotelian notion of “Form” when it is compared with the recent notion of “information” in the context of the physics of “complex systems” and the biology of “living systems”.
From Fractals and Cellular Automata to Biology
Journal of Applied Mathematics and Physics
Rendiconti del Circolo Matematico di Palermo
Annales De L I H P Physique Theorique, 1981
Uploads
Papers by Alberto Strumia