
manal adel
Agricultural Biotechnology -Nanotechnology
Address: National Research Center -Cairo-Egypt
Address: National Research Center -Cairo-Egypt
less
Related Authors
Jayjit Majumdar
University of Kalyani
Angga Putra Kusumastianto
Universitas Gadjah Mada (Yogyakarta)
Danielle Whittaker
Michigan State University
Puja Ray
Presidency University, Kolkata
Aniruddha Mitra
Centre National de la Recherche Scientifique / French National Centre for Scientific Research
Andrés Orellana
Universidad Experimental Del Tachira
Abdallah M Albeltagy
Agriculture Research Center, Egypt
Ashraf M Emara
Tanta University
Christopher Larbie
Kwame Nkrumah University of Science and Technology
Eliana Cancello
Universidade de São Paulo
Uploads
Papers by manal adel
quite hard for us to imagine a world that's too small to see. You've probably
looked at amazing photos in science books of things like dust mites and flies
photographed with electron microscopes. These powerful scientific instruments
make images that are microscopic, which means on a scale millionths of a meter
wide. Nanoscopic involves shrinking things down to a whole new level. Nano
means "billionth", so a nanometer is one billionth of a meter. In other words, the
nanoscale is 1000 times smaller than the microscopic scale and a billion (1000
million) times smaller than the world of meters that we live in.
Nanotechnology is a novel scientific approach that involves the use of
materials and equipment capable of manipulating physical as well as chemical
properties of a substance at molecular levels. On the other hand, bio-technology
involves using the knowledge and techniques of biology to manipulate
molecular, genetic and cellular processes to develop products and services and
is used in diverse fields from medicine to agriculture (Fakruddin et al., 2012).
قدیما في جبال الأندیز.. وتمت زراعتھ الأولى في دولة بیرو في أمریكا اللاتینیة منذ أكثر من ستة
آلاف عام مضت.ومن العجیب أن یظل ھذا المحصول حكرا على دول أمریكا اللاتینیة حتى بدایة
القرن السادس عشر، حیث تم نقل شتلاتھ إلى أوروبا عبر البحارة الإسبان وزراعتھ في جزر
الكناري عام 1573 ، وفي غضون أقل من قرن من الزمان تمت زراعتھ في إیرلندا وروسیا ودول
شرق أوروبا وتم أیضا انتشار زراعتھ بسرعة في المستعمرات الأوروبیة في آسیا وإفریقیا
وأسترالیا عبر التجار البرتغالیین والھولندیین وغیرھم، وتعد البطاطس في الوقت الراھن الغذاء
الرئیسي للسكان في دول العالم كافة دون استثناء.
یبلغ إجمالي المساحة المزروعة لمحصول البطاطس في مجموعة الدول العربیة نحو 420
ألف ھكتار تنتج ما یعادل تسعة ملایین طن، ومن الدول المنتجة لھا مصر والجزائر والمغرب. وتعد
مصر على قمة الدول العربیة المنتجة والمصدرة لمحصول البطاطس. أما بالنسبة لغالبیة الدول
العربیة فھي دول مستوردة للمنتجات المصنعة والمجمدة والتقاوي، مع العلم أن معدل الاستھلاك
للفرد العربي في حدود 40 كیلو جراما سنویا. وھذا الرقم في كل الحالات یزید على معدل استھلاك
الفرد على المستوى العالمي والذي یقدر في الوقت الراھن بنحو 25 كیلو جراما سنویا
% والخلاصة، أن ھناك العدید من الشواھد تؤكد زیادة الطلب على محصول البطاطس بمعدل 4
سنویا في الدول النامیة والتي ینظر إلیھا باعتبارھا الكنز المفقود الذي یحل مشكلة الجوع في
المرحلة المقبلة بعد النقص الحاد من الغذاء العالمي من الحبوب. ومن ثم فإن ھناك ضرورة ملحة
لتوجیھ البحوث العلمیة لزیادة إنتاجیة محصول البطاطس في تلك الدول حتى یمكن التصدي
لظاھرة الفقر فیھا.
ومحصول البطاطس ھو أحد المحاصیل الھامة من الناحیة الغذائیة حیث یشغل الترتیب
الرابع بعد القمح والذرة والأرز والترتیب الأول فى إنتاج الطاقة والثانى فى إنتاج البروتینات بعد
وفى جمھوریة مصر العربیة فالبطاطس تعتبر من . FAOSTAT data, فول الصویا 2006
محاصیل الخضر الرئیسیة فى مصر وتأتى فى المرتبة الثانیة بعد الطماطم من حیث المساحة
ولكنھا تعتبر محصول الخضر الاول تصدیریا والتى تنتشر زراعتھا تحت ظروف بیئیة متباینة حیث
یزرع منھا سنویاً ما یقرب على 200 ألف فداناً سنویاً . كما ان البطاطس تحتل المركز الأول بین
محاصیل الخضر التصدیریة فى مصر حیث ارتفع متوسط كمیات البطاطس المصدرة خلال عام
2004 خاصة للأسواق الأوروبیة فبلغ اجمالى البطاطس المصدرة الطازجة 380 الف طن
وتبلغ كمیة التقاوى .(FAOSTAT data, ومنتجات البطاطس المجمدة 18 الف طن ( 2008
المستخدمة فى مصر سنویاً لزراعة المواسم الزراعیة الثلاث حوالى 250 ألف طن أو التصنیع
25 كجم من - 1.5 ملیون طن ھذا ویبلغ متوسط استھلاك الفرد فى مصر حوالى 20 - حوالى 1.2
البطاطس سنویاً.
وتصاب البطاطس بآفات حشریة مختلفة تسبب أضراراً كبیرة للمحصول نتیجة تغذیة ھذه الآفات
وما تنقلھ من أمراض تؤثر على سلامة ونمو محصول البطاطس وتؤدى إلى قلة وحجم وكمیة
ونوعیة المحصول وتؤدي شدة الإصابة بالآفات الحشریة إلى أن یصبح المحصول غیر قابل
للتسویق أو قلیل العائد لانخفاض قیمتھ ورداءة نوعھ .و من ھنا جاءت اھمیة البحث عن وسائل
امنھ لمكافحة تلك الافات بعیدة عن استخدام المبیدات الكیماویة لما لھا من اضرار كبیرة على البیئة
و الانسان و الحیوان وھذا كان من اھم الاھداف الرئیسیة لھذا المشروع .
This book reviews the potential for integrating, and thereby strengthening, some insect pest control technologies that have each already made significant contributions to reducing both crop losses and insecticide use in many countries. Integrated pest management (IPM) was developed as an insect control strategy in part due to the failure of insecticides to keep insect pests under control in addition that destroyed the balance between the plant, herbivores and their natural enemies(tri-trophic relationship). For some crops, inordinate insecticide applications had resulted in development of insects resistant to insecticides, emergence of new pests that were worse than those being targeted, increasing crop losses and negative environmental impacts. IPM has gone a long way in solving these problems by utilizing a collection of pest monitoring and control strategies designed to maintain pest populations below levels causing economic loss. This almost always includes genetic host plant resistance combined with biological control, cultural methods, behavioral methods and farmer knowledge. Effective IPM strategies have now been developed for many crops, including those that feed the developing world, and further improvements are continually being made.
Plant-herbivore interactions, trophic cascades, and tritrophic relationships are nonrandom associations that have been the subject of much interest among evolutionary and ecological entomologists. Issues such as evolutionary pathways of plant-insect relationships, chemical mechanisms responsible for these relationships, and their population-, community-, and ecosystem-level consequences have captivated researchers' interest not only for their basic ecological implications, but also for their importance in applied areas such as biological control.
The book reviews the potential for integrating, some insect pest control technologies that have each already made significant contributions to reducing both crop losses and insecticide use in many countries. Several chapters in this book present evidence indicating that it should be possible to integrate using this tri-trophic realationship between plant, herbivore and natural enemey in right way to make important contributions toward the necessary increases in yield, productivity and sustainability. Induced plant responses and their effects on herbivores have been demonstrated across a broad range of plant and animal taxa. These reactions are often more complex than simple generalised wound responses, and are frequently induced by specific elicitors associated with insects or pathogens. The effects of induced responses on herbivores have been categorised as direct or indirect depending on their mechanism. Direct induced defences affect herbivore development negatively by reducing the quality of the plant as a food source ( Karban & Myers 1989), while indirect defences enhance performance of the herbivore's natural enemies.
This book shied light on the direct and indirect impacts of induction can alter both behaviour and development. These components have been well described separately, but little is known about the net effects on herbivores and parasitoids, at either the individual fitness or population levels. While most researchers agree that multiple effects are important, the ecological and evolutionary interpretations ascribed to induced plant responses vary, and the overall significance of these responses to plant fitness remains unclear ( Hunter & Schultz 1993). Thus, a more inclusive approach could improve interpretations of the ecological and evolutionary significance of inducible responses.
Direct effects of induced plant responses on herbivores have received the most attention. Physiological changes following actual or simulated feeding by herbivores have been shown to reduce the quality of plant tissue for subsequent feeding. Such changes can affect either the herbivore eliciting the response (short-term induction), or subsequent herbivore generations or species (long-term induction). The view that induced responses benefit plants directly through impacts on the herbivore is supported by examples of genetic feedback between the plant and the herbivore, the commonality of defences against herbivores and pathogens, and the complication that relying on natural enemy abundance can be risky and unpredictable. Early interpretations of how induced responses could benefit plants indirectly emphasised the possibility that prolonged herbivore development could increase exposure to natural enemies. More studies that are recent have emphasised the attractiveness of induced plant allelochemicals to parasitoids and predators.
In general, as the suitability of a host plant for herbivore development declines, so does the developmental performance of associated parasitoids. Decreased suitability of plants due to induction may have similar effects on parasitoids.
A thorough understanding of tritrophic interactions should incorporate the potentially opposing effects of inducible plant responses on the behavioural and developmental success of parasitoids and herbivores. Such information could provide further insight into the role of induction on insect population dynamics, plant–insect coevolution, and the efficacy of biological control programmes.
This book is organized in introductory chapters and the seven chapters separated, that emphasize the resources provided by plants, as well as the evolutionary ecology of plant-insect interactions. The first chapter of this book provides a comprehensive review of the physical and chemical characteristics of different types of plant-provided food as well as the factors that can affect their suitability for omnivores. Chapters five and six deal with effect of UV and co2 as environmental factors on the tritrophic relationship. While the last chapter was given information about the risk assessment of GM crops introduced in environment and how much will effect on these two items of tritrophic relationship and provides much of the information needed to critically evaluate the potential use of food supplements to increase the effectiveness of parasitoids in suppressing prey populations.
can be dried and stored in bulk, such as cereal grains, flour, oil
seeds, legumes, nuts, dried fruits, animal products, and packaged,
baked or processed foods. Of these, cereal grains make up the
majority of commodities maintained in storage, and represent an
important component of the world food supply. Recent post
harvest losses have been estimated at $5 billion per year in the U.S.
(mainly due to insects and microbes, which usually work in
concert), with these being proportionally higher in developing
countries. Insecticides can be used to protect grain, but few are
labelled for use on grain, and insects are evolving resistance to
some of these. Early attempts to control stored grain pests relied
on methods such as mixing dry soil and wood ash with the grain
causing lethal dehydration of insects, and the fumigant action of
certain plant material (Levinson and Levinson, 1998). Researchers
at universities and government agencies are looking for
alternatives to chemical pesticides (including biological controls
and microbial control Salama et al 1996, Abdel –Razek 1998 and
Abdel –Razek et al 1999) for grain protection and to develop
methods of Integrated Pest Management for stored product.
Common storage insect pests include the Indian meal moth
and Mediterranean flour moth that infest grains, flours, animal
feed, and people's pantries; red and confused flour beetles in the
genus Tribolium, together with saw-toothed and flat grain beetles
in the genera Oryzaephilus and Cryptolestes, that are found in
many grain products; and the more serious internal grain feeders
such as rice, maize and granary weevils in the genus Sitophilus,
and the lesser and larger grain borers, bostrichid beetles that riddle
stored grains with their tunnelling activities.
In addition it is important to know that there are important pest as
other than insects which attack stored product and causes great
damage, the rodent and birds are the major vertebrate pests of
stored product.
وهذه التقنية الواعدة تبشر بقفزة هائلة في جميع فروع العلم , ويرى المتفائلون أنها ستلقي بظلالها على كافة مجالات الطب الحديث و الاقتصاد العالمي و العلاقات الدولية وحتى الحياة اليومية للفرد العادي.
سلیما وخالیا من الإصابات الحشریة ومن ھنا ظھرت مشكلة التخزین ومشكلة آفات الحبوب
والمواد المخزونة والتي أصبحت خطرا قومیا جسیما وأصبحت حشرات المخازن تسبب فقدا في
المواد المخزونة یقدر بحوالي ١٥ % من الإنتاج . لذلك فإن مكافحتھا أصبحت أمرا مھما لأن في
ذلك الحفاظ علي ممتلكات الإنسان وغذائھ وكسائھ وأثاث منزلھ.
وقد یترتب علي التخزین غیر الجید للمواد المخزونة فقد لكثیر من الحبوب وخفض قیمتھا الغذائیة
وتعرضھا للإصابة لیس بحشرات المخازن وحدھا ولكن بالفئران والطیور والكائنات الحیة الدقیقة
كما تتأثر صفاتھا بفعل الحرارة والرطوبة بالمخزن.