Vanillin is a popular and valuable flavour compound. It is the key constituent of the natural van... more Vanillin is a popular and valuable flavour compound. It is the key constituent of the natural vanilla flavour obtained from cured vanilla pods. Here we show that a single hydratase/lyase type enzyme designated vanillin synthase (VpVAN) catalyses direct conversion of ferulic acid and its glucoside into vanillin and its glucoside, respectively. The enzyme shows high sequence similarity to cysteine proteinases and is specific to the substitution pattern at the aromatic ring and does not metabolize caffeic acid and p-coumaric acid as demonstrated by coupled transcription/translation assays. VpVAN localizes to the inner part of the vanilla pod and high transcript levels are found in single cells located a few cell layers from the inner epidermis. Transient expression of VpVAN in tobacco and stable expression in barley in combination with the action of endogenous alcohol dehydrogenases and UDP-glucosyltransferases result in vanillyl alcohol glucoside formation from endogenous ferulic acid. A gene encoding an enzyme showing 71% sequence identity to VpVAN was identified in another vanillin-producing plant species Glechoma hederacea and was also shown to be a vanillin synthase as demonstrated by transient expression in tobacco.
Cassava (Manihot esculenta) is a eudicotyledonous plant that produces the valine- and isoleucine-... more Cassava (Manihot esculenta) is a eudicotyledonous plant that produces the valine- and isoleucine-derived cyanogenic glucosides linamarin and lotaustralin with the corresponding oximes and cyanohydrins as key intermediates. CYP79 enzymes catalyzing amino acid-to-oxime conversion in cyanogenic glucoside biosynthesis are known from several plants including cassava. The enzyme system converting oxime into cyanohydrin has previously only been identified in the monocotyledonous plant great millet (Sorghum bicolor). Using this great millet CYP71E1 sequence as a query in a Basic Local Alignment Search Tool-p search, a putative functional homolog that exhibited an approximately 50% amino acid sequence identity was found in cassava. The corresponding full-length cDNA clone was obtained from a plasmid library prepared from cassava shoot tips and was assigned CYP71E7. Heterologous expression of CYP71E7 in yeast afforded microsomes converting 2-methylpropanal oxime (valine-derived oxime) and 2-m...
Background: Small-secreted peptides are emerging as important components in cell-cell communicati... more Background: Small-secreted peptides are emerging as important components in cell-cell communication during basic developmental stages of plant cell growth and development. Plant peptide containing sulfated tyrosine 1 (PSY1) has been reported to promote cell expansion and differentiation in the elongation zone of roots. PSY1 action is dependent on a receptor PSY1R that triggers a signaling cascade leading to cell elongation. However little is known about cellular functions and the components involved in PSY1-based signaling cascade. Results: Differentially expressed genes were identified in a wild type plant line and in a psy1r receptor mutant line of Arabidopsis thaliana after treatment with PSY1. Seventy-seven genes were found to be responsive to the PSY1 peptide in wild type plants while 154 genes were responsive in the receptor mutant plants. PSY1 activates the transcripts of genes involved in cell wall modification. Gene enrichment analysis revealed that PSY1-responsive genes are involved in responses to stimuli, metabolic processes and biosynthetic processes. The significant enrichment terms of PSY1-responsive genes were higher in psy1r mutant plants compared to in wild type plants. Two parallel responses to PSY1 were identified, differing in their dependency on the PSY1R receptor. Promoter analysis of the differentially expressed genes identified a light regulatory motif in some of these.
Cyanogenic glucosides are amino acid-derived defence compounds found in a large number of vascula... more Cyanogenic glucosides are amino acid-derived defence compounds found in a large number of vascular plants. Their hydrolysis by specific b-glucosidases following tissue damage results in the release of hydrogen cyanide. The cyanogenesis deficient1 (cyd1) mutant of Lotus japonicus carries a partial deletion of the CYP79D3 gene, which encodes a cytochrome P450 enzyme that is responsible for the first step in cyanogenic glucoside biosynthesis. The genomic region surrounding CYP79D3 contains genes encoding the CYP736A2 protein and the UDP-glycosyltransferase UGT85K3. In combination with CYP79D3, these genes encode the enzymes that constitute the entire pathway for cyanogenic glucoside biosynthesis. The biosynthetic genes for cyanogenic glucoside biosynthesis are also co-localized in cassava (Manihot esculenta) and sorghum (Sorghum bicolor), but the three gene clusters show no other similarities. Although the individual enzymes encoded by the biosynthetic genes in these three plant species are related, they are not necessarily orthologous. The independent evolution of cyanogenic glucoside biosynthesis in several higher plant lineages by the repeated recruitment of members from similar gene families, such as the CYP79s, is a likely scenario.
Manihot esculenta (cassava) contains two cyanogenic glucosides, linamarin and lotaustralin, biosy... more Manihot esculenta (cassava) contains two cyanogenic glucosides, linamarin and lotaustralin, biosynthesized from L-valine and L-isoleucine, respectively. In this study, cDNAs encoding two uridine diphosphate glycosyltransferase (UGT) paralogs, assigned the names UGT85K4 and UGT85K5, have been isolated from cassava. The paralogs display 96% amino acid identity, and belong to a family containing cyanogenic glucoside-specific UGTs from Sorghum bicolor and Prunus dulcis. Recombinant UGT85K4 and UGT85K5 produced in Escherichia coli were able to glucosylate acetone cyanohydrin and 2-hydroxy-2-methylbutyronitrile, forming linamarin and lotaustralin. UGT85K4 and UGT85K5 show broad in vitro substrate specificity, as documented by their ability to glucosylate other hydroxynitriles, some flavonoids and simple alcohols. Immunolocalization studies indicated that UGT85K4 and UGT85K5 co-occur with CYP79D1/D2 and CYP71E7 paralogs, which catalyze earlier steps in cyanogenic glucoside synthesis in cassava. These enzymes are all found in mesophyll and xylem parenchyma cells in the first unfolded cassava leaf. In situ PCR showed that UGT85K4 and UGT85K5 are co-expressed with CYP79D1 and both CYP71E7 paralogs in the cortex, xylem and phloem parenchyma, and in specific cells in the endodermis of the petiole of the first unfolded leaf. Based on the data obtained, UGT85K4 and UGT85K5 are concluded to be the UGTs catalyzing in planta synthesis of cyanogenic glucosides. The localization of the biosynthetic enzymes suggests that cyanogenic glucosides may play a role in both defense reactions and in fine-tuning nitrogen assimilation in cassava.
Vanillin is a popular and valuable flavour compound. It is the key constituent of the natural van... more Vanillin is a popular and valuable flavour compound. It is the key constituent of the natural vanilla flavour obtained from cured vanilla pods. Here we show that a single hydratase/lyase type enzyme designated vanillin synthase (VpVAN) catalyses direct conversion of ferulic acid and its glucoside into vanillin and its glucoside, respectively. The enzyme shows high sequence similarity to cysteine proteinases and is specific to the substitution pattern at the aromatic ring and does not metabolize caffeic acid and p-coumaric acid as demonstrated by coupled transcription/translation assays. VpVAN localizes to the inner part of the vanilla pod and high transcript levels are found in single cells located a few cell layers from the inner epidermis. Transient expression of VpVAN in tobacco and stable expression in barley in combination with the action of endogenous alcohol dehydrogenases and UDP-glucosyltransferases result in vanillyl alcohol glucoside formation from endogenous ferulic acid. A gene encoding an enzyme showing 71% sequence identity to VpVAN was identified in another vanillin-producing plant species Glechoma hederacea and was also shown to be a vanillin synthase as demonstrated by transient expression in tobacco.
Cassava is a major tropical food crop in the Euphorbiaceae family that has high carbohydrate prod... more Cassava is a major tropical food crop in the Euphorbiaceae family that has high carbohydrate production potential and adaptability to diverse environments. Here we present the draft genome sequences of a wild ancestor and a domesticated variety of cassava and comparative analyses with a partial inbred line. We identify 1,584 and 1,678 gene models specific to the wild and domesticated varieties, respectively, and discover high heterozygosity and millions of single-nucleotide variations. Our analyses reveal that genes involved in photosynthesis, starch accumulation and abiotic stresses have been positively selected, whereas those involved in cell wall biosynthesis and secondary metabolism, including cyanogenic glucoside formation, have been negatively selected in the cultivated varieties, reflecting the result of natural selection and domestication. Differences in microRNA genes and retrotransposon regulation could partly explain an increased carbon flux towards starch accumulation and reduced cyanogenic glucoside accumulation in domesticated cassava. These results may contribute to genetic improvement of cassava through better understanding of its biology.
In comparison with the technology platforms developed to localize transcripts and proteins, imagi... more In comparison with the technology platforms developed to localize transcripts and proteins, imaging tools for visualization of metabolite distributions in plant tissues are less well developed and lack versatility. This hampers our understanding of plant metabolism and dynamics. In this study, we demonstrate that desorption electrospray ionization mass spectrometry imaging (DESI-MSI) of tissue imprints on porous Teflon may be used to accurately image the distribution of even labile plant metabolites such as hydroxynitrile glucosides, which normally undergo enzymatic hydrolysis by specific b-glucosidases upon cell disruption. This fast and simple sample preparation resulted in no substantial differences in the distribution and ratios of all hydroxynitrile glucosides between leaves from wild-type Lotus japonicus and a b-glucosidase mutant plant that lacks the ability to hydrolyze certain hydroxynitrile glucosides. In wild-type, the enzymatic conversion of hydroxynitrile glucosides and the concomitant release of glucose were easily visualized when a restricted area of the leaf tissue was damaged prior to sample preparation. The gene encoding the first enzyme in hydroxynitrile glucoside biosynthesis in L. japonicus leaves, CYP79D3, was found to be highly expressed during the early stages of leaf development, and the hydroxynitrile glucoside distribution in mature leaves reflected this early expression pattern. The utility of direct DESI-MSI of plant tissue was demonstrated using cryo-sections of cassava (Manihot esculenta) tubers. The hydroxynitrile glucoside levels were highest in the outer cell layers, as verified by LC-MS analyses. The unexpected discovery of a hydroxynitrile-derived di-glycoside shows the potential of DESI-MSI to discover and guide investigations into new metabolic routes.
The composition and permeability of the cuticle has a large influence on its ability to protect t... more The composition and permeability of the cuticle has a large influence on its ability to protect the plant against various forms of biotic and abiotic stress. WAX INDUCER1 (WIN1) and related transcription factors have recently been shown to trigger wax production, enhance drought tolerance, and modulate cuticular permeability when overexpressed in Arabidopsis thaliana. We found that WIN1 influences the composition of cutin, a polyester that forms the backbone of the cuticle. WIN1 overexpression induces compositional changes and an overall increase in cutin production in vegetative and reproductive organs, while its downregulation has the opposite effect. Changes in cutin composition are preceded by the rapid and coordinated induction of several genes known or likely to be involved in cutin biosynthesis. This transcriptional response is followed after a delay by the induction of genes associated with wax biosynthesis, suggesting that the regulation of cutin and wax production by WIN1 is a two-step process. We demonstrate that at least one of the cutin pathway genes, which encodes long-chain acyl-CoA synthetase LACS2, is likely to be directly targeted by WIN1. Overall, our results suggest that WIN1 modulates cuticle permeability in Arabidopsis by regulating genes encoding cutin pathway enzymes. 2 Current address:
Background: Plants integrate signals from the environment and use these to modify the timing of d... more Background: Plants integrate signals from the environment and use these to modify the timing of development according to seasonal cues. Seed germination is a key example of this phenomenon and in Arabidopsis is promoted by the synergistic interaction of light and low temperatures in dormant seeds. This signaling pathway is known to converge on the regulation of the gibberellin (GA) biosynthetic genes GA3 oxidase (GA3ox), whose expression is transcriptionally induced by light and cold in imbibed seeds. However, the molecular basis of this response has until now been unknown. Results: Here we show that the bHLH transcription factor SPATULA is a light-stable repressor of seed germination and mediates the germination response to temperature. Furthermore, SPT is required in dormant seeds for maintaining the repression of GA3ox transcription. We also show that the related protein PIL5 represses seed germination and GA3ox expression in the dark. Conclusions: We conclude that SPT and PIL5 form part of a regulatory network coupling seed germination and GA3ox expression to light and temperature signaling in the seed.
Vanillin is a popular and valuable flavour compound. It is the key constituent of the natural van... more Vanillin is a popular and valuable flavour compound. It is the key constituent of the natural vanilla flavour obtained from cured vanilla pods. Here we show that a single hydratase/lyase type enzyme designated vanillin synthase (VpVAN) catalyses direct conversion of ferulic acid and its glucoside into vanillin and its glucoside, respectively. The enzyme shows high sequence similarity to cysteine proteinases and is specific to the substitution pattern at the aromatic ring and does not metabolize caffeic acid and p-coumaric acid as demonstrated by coupled transcription/translation assays. VpVAN localizes to the inner part of the vanilla pod and high transcript levels are found in single cells located a few cell layers from the inner epidermis. Transient expression of VpVAN in tobacco and stable expression in barley in combination with the action of endogenous alcohol dehydrogenases and UDP-glucosyltransferases result in vanillyl alcohol glucoside formation from endogenous ferulic acid. A gene encoding an enzyme showing 71% sequence identity to VpVAN was identified in another vanillin-producing plant species Glechoma hederacea and was also shown to be a vanillin synthase as demonstrated by transient expression in tobacco.
Cassava (Manihot esculenta) is a eudicotyledonous plant that produces the valine- and isoleucine-... more Cassava (Manihot esculenta) is a eudicotyledonous plant that produces the valine- and isoleucine-derived cyanogenic glucosides linamarin and lotaustralin with the corresponding oximes and cyanohydrins as key intermediates. CYP79 enzymes catalyzing amino acid-to-oxime conversion in cyanogenic glucoside biosynthesis are known from several plants including cassava. The enzyme system converting oxime into cyanohydrin has previously only been identified in the monocotyledonous plant great millet (Sorghum bicolor). Using this great millet CYP71E1 sequence as a query in a Basic Local Alignment Search Tool-p search, a putative functional homolog that exhibited an approximately 50% amino acid sequence identity was found in cassava. The corresponding full-length cDNA clone was obtained from a plasmid library prepared from cassava shoot tips and was assigned CYP71E7. Heterologous expression of CYP71E7 in yeast afforded microsomes converting 2-methylpropanal oxime (valine-derived oxime) and 2-m...
Background: Small-secreted peptides are emerging as important components in cell-cell communicati... more Background: Small-secreted peptides are emerging as important components in cell-cell communication during basic developmental stages of plant cell growth and development. Plant peptide containing sulfated tyrosine 1 (PSY1) has been reported to promote cell expansion and differentiation in the elongation zone of roots. PSY1 action is dependent on a receptor PSY1R that triggers a signaling cascade leading to cell elongation. However little is known about cellular functions and the components involved in PSY1-based signaling cascade. Results: Differentially expressed genes were identified in a wild type plant line and in a psy1r receptor mutant line of Arabidopsis thaliana after treatment with PSY1. Seventy-seven genes were found to be responsive to the PSY1 peptide in wild type plants while 154 genes were responsive in the receptor mutant plants. PSY1 activates the transcripts of genes involved in cell wall modification. Gene enrichment analysis revealed that PSY1-responsive genes are involved in responses to stimuli, metabolic processes and biosynthetic processes. The significant enrichment terms of PSY1-responsive genes were higher in psy1r mutant plants compared to in wild type plants. Two parallel responses to PSY1 were identified, differing in their dependency on the PSY1R receptor. Promoter analysis of the differentially expressed genes identified a light regulatory motif in some of these.
Cyanogenic glucosides are amino acid-derived defence compounds found in a large number of vascula... more Cyanogenic glucosides are amino acid-derived defence compounds found in a large number of vascular plants. Their hydrolysis by specific b-glucosidases following tissue damage results in the release of hydrogen cyanide. The cyanogenesis deficient1 (cyd1) mutant of Lotus japonicus carries a partial deletion of the CYP79D3 gene, which encodes a cytochrome P450 enzyme that is responsible for the first step in cyanogenic glucoside biosynthesis. The genomic region surrounding CYP79D3 contains genes encoding the CYP736A2 protein and the UDP-glycosyltransferase UGT85K3. In combination with CYP79D3, these genes encode the enzymes that constitute the entire pathway for cyanogenic glucoside biosynthesis. The biosynthetic genes for cyanogenic glucoside biosynthesis are also co-localized in cassava (Manihot esculenta) and sorghum (Sorghum bicolor), but the three gene clusters show no other similarities. Although the individual enzymes encoded by the biosynthetic genes in these three plant species are related, they are not necessarily orthologous. The independent evolution of cyanogenic glucoside biosynthesis in several higher plant lineages by the repeated recruitment of members from similar gene families, such as the CYP79s, is a likely scenario.
Manihot esculenta (cassava) contains two cyanogenic glucosides, linamarin and lotaustralin, biosy... more Manihot esculenta (cassava) contains two cyanogenic glucosides, linamarin and lotaustralin, biosynthesized from L-valine and L-isoleucine, respectively. In this study, cDNAs encoding two uridine diphosphate glycosyltransferase (UGT) paralogs, assigned the names UGT85K4 and UGT85K5, have been isolated from cassava. The paralogs display 96% amino acid identity, and belong to a family containing cyanogenic glucoside-specific UGTs from Sorghum bicolor and Prunus dulcis. Recombinant UGT85K4 and UGT85K5 produced in Escherichia coli were able to glucosylate acetone cyanohydrin and 2-hydroxy-2-methylbutyronitrile, forming linamarin and lotaustralin. UGT85K4 and UGT85K5 show broad in vitro substrate specificity, as documented by their ability to glucosylate other hydroxynitriles, some flavonoids and simple alcohols. Immunolocalization studies indicated that UGT85K4 and UGT85K5 co-occur with CYP79D1/D2 and CYP71E7 paralogs, which catalyze earlier steps in cyanogenic glucoside synthesis in cassava. These enzymes are all found in mesophyll and xylem parenchyma cells in the first unfolded cassava leaf. In situ PCR showed that UGT85K4 and UGT85K5 are co-expressed with CYP79D1 and both CYP71E7 paralogs in the cortex, xylem and phloem parenchyma, and in specific cells in the endodermis of the petiole of the first unfolded leaf. Based on the data obtained, UGT85K4 and UGT85K5 are concluded to be the UGTs catalyzing in planta synthesis of cyanogenic glucosides. The localization of the biosynthetic enzymes suggests that cyanogenic glucosides may play a role in both defense reactions and in fine-tuning nitrogen assimilation in cassava.
Vanillin is a popular and valuable flavour compound. It is the key constituent of the natural van... more Vanillin is a popular and valuable flavour compound. It is the key constituent of the natural vanilla flavour obtained from cured vanilla pods. Here we show that a single hydratase/lyase type enzyme designated vanillin synthase (VpVAN) catalyses direct conversion of ferulic acid and its glucoside into vanillin and its glucoside, respectively. The enzyme shows high sequence similarity to cysteine proteinases and is specific to the substitution pattern at the aromatic ring and does not metabolize caffeic acid and p-coumaric acid as demonstrated by coupled transcription/translation assays. VpVAN localizes to the inner part of the vanilla pod and high transcript levels are found in single cells located a few cell layers from the inner epidermis. Transient expression of VpVAN in tobacco and stable expression in barley in combination with the action of endogenous alcohol dehydrogenases and UDP-glucosyltransferases result in vanillyl alcohol glucoside formation from endogenous ferulic acid. A gene encoding an enzyme showing 71% sequence identity to VpVAN was identified in another vanillin-producing plant species Glechoma hederacea and was also shown to be a vanillin synthase as demonstrated by transient expression in tobacco.
Cassava is a major tropical food crop in the Euphorbiaceae family that has high carbohydrate prod... more Cassava is a major tropical food crop in the Euphorbiaceae family that has high carbohydrate production potential and adaptability to diverse environments. Here we present the draft genome sequences of a wild ancestor and a domesticated variety of cassava and comparative analyses with a partial inbred line. We identify 1,584 and 1,678 gene models specific to the wild and domesticated varieties, respectively, and discover high heterozygosity and millions of single-nucleotide variations. Our analyses reveal that genes involved in photosynthesis, starch accumulation and abiotic stresses have been positively selected, whereas those involved in cell wall biosynthesis and secondary metabolism, including cyanogenic glucoside formation, have been negatively selected in the cultivated varieties, reflecting the result of natural selection and domestication. Differences in microRNA genes and retrotransposon regulation could partly explain an increased carbon flux towards starch accumulation and reduced cyanogenic glucoside accumulation in domesticated cassava. These results may contribute to genetic improvement of cassava through better understanding of its biology.
In comparison with the technology platforms developed to localize transcripts and proteins, imagi... more In comparison with the technology platforms developed to localize transcripts and proteins, imaging tools for visualization of metabolite distributions in plant tissues are less well developed and lack versatility. This hampers our understanding of plant metabolism and dynamics. In this study, we demonstrate that desorption electrospray ionization mass spectrometry imaging (DESI-MSI) of tissue imprints on porous Teflon may be used to accurately image the distribution of even labile plant metabolites such as hydroxynitrile glucosides, which normally undergo enzymatic hydrolysis by specific b-glucosidases upon cell disruption. This fast and simple sample preparation resulted in no substantial differences in the distribution and ratios of all hydroxynitrile glucosides between leaves from wild-type Lotus japonicus and a b-glucosidase mutant plant that lacks the ability to hydrolyze certain hydroxynitrile glucosides. In wild-type, the enzymatic conversion of hydroxynitrile glucosides and the concomitant release of glucose were easily visualized when a restricted area of the leaf tissue was damaged prior to sample preparation. The gene encoding the first enzyme in hydroxynitrile glucoside biosynthesis in L. japonicus leaves, CYP79D3, was found to be highly expressed during the early stages of leaf development, and the hydroxynitrile glucoside distribution in mature leaves reflected this early expression pattern. The utility of direct DESI-MSI of plant tissue was demonstrated using cryo-sections of cassava (Manihot esculenta) tubers. The hydroxynitrile glucoside levels were highest in the outer cell layers, as verified by LC-MS analyses. The unexpected discovery of a hydroxynitrile-derived di-glycoside shows the potential of DESI-MSI to discover and guide investigations into new metabolic routes.
The composition and permeability of the cuticle has a large influence on its ability to protect t... more The composition and permeability of the cuticle has a large influence on its ability to protect the plant against various forms of biotic and abiotic stress. WAX INDUCER1 (WIN1) and related transcription factors have recently been shown to trigger wax production, enhance drought tolerance, and modulate cuticular permeability when overexpressed in Arabidopsis thaliana. We found that WIN1 influences the composition of cutin, a polyester that forms the backbone of the cuticle. WIN1 overexpression induces compositional changes and an overall increase in cutin production in vegetative and reproductive organs, while its downregulation has the opposite effect. Changes in cutin composition are preceded by the rapid and coordinated induction of several genes known or likely to be involved in cutin biosynthesis. This transcriptional response is followed after a delay by the induction of genes associated with wax biosynthesis, suggesting that the regulation of cutin and wax production by WIN1 is a two-step process. We demonstrate that at least one of the cutin pathway genes, which encodes long-chain acyl-CoA synthetase LACS2, is likely to be directly targeted by WIN1. Overall, our results suggest that WIN1 modulates cuticle permeability in Arabidopsis by regulating genes encoding cutin pathway enzymes. 2 Current address:
Background: Plants integrate signals from the environment and use these to modify the timing of d... more Background: Plants integrate signals from the environment and use these to modify the timing of development according to seasonal cues. Seed germination is a key example of this phenomenon and in Arabidopsis is promoted by the synergistic interaction of light and low temperatures in dormant seeds. This signaling pathway is known to converge on the regulation of the gibberellin (GA) biosynthetic genes GA3 oxidase (GA3ox), whose expression is transcriptionally induced by light and cold in imbibed seeds. However, the molecular basis of this response has until now been unknown. Results: Here we show that the bHLH transcription factor SPATULA is a light-stable repressor of seed germination and mediates the germination response to temperature. Furthermore, SPT is required in dormant seeds for maintaining the repression of GA3ox transcription. We also show that the related protein PIL5 represses seed germination and GA3ox expression in the dark. Conclusions: We conclude that SPT and PIL5 form part of a regulatory network coupling seed germination and GA3ox expression to light and temperature signaling in the seed.
Uploads
Papers by R. Kannangara