数学
(mathematics から転送)
出典: フリー百科事典『ウィキペディア(Wikipedia)』 (2026/01/03 14:22 UTC 版)
|
数学 |
||
|
|
||
|
|
英語としての数学(mathematics)の原義は幾何、算術、一部の物理科学などを指す[1]。現代では数学は「算術・代数学・幾何学・解析学・微分学・積分学など」であり[9]、論理学[10]、情報科学[11]、計算機科学(コンピュータ科学)とともに形式科学に属する[12]。文部科学省や学術論文の分類では理学にも属する[13][14]。
第二次大戦後の数学はサイバネティックス、ゲーム理論、計算機科学との間に数理科学という新分野を生み出したことで、数学の社会的関係も大変容しつつあるとされる[15]。『改訂新版 世界大百科事典』では、数学の純粋面と応用面の境は不確かであり、例えば数理工学でも「数学そのものとみなしてよい内容」が多いと数学者の飛田武幸は記している(計算機数学や数値解析など)[16]。
一方、数学は純粋に抽象的な対象を扱うという哲学的・歴史的見解はあり[17][3]、その手法で世界を解明するとも言われる[3]。これに関して『現代数理科学事典』は、ニュートンやポアンカレ由来の概念および計算機科学が示すように、純粋数学と物理学と情報処理の違いは必ずしも明確でないとしている[18][注 1]。
語源
『オックスフォード英語辞典』において、もともとの数学(mathematics)は幾何学、算術、および幾何学と関連する一部の物理科学(physical sciences)などを包括的に指しており、1581年には既に使われていた[1]。より根本的には古代ギリシア語: μαθηματικά(mathematika)に由来する[1]。
現代の日本語における「数学」は、直接的には英語の mathematics の訳語ないし同義語とされる。英語の mathematics ないしその単数形 mathematic の直接の語源は、古フランス語 mathematique であり、これはラテン語の (ars) mathematica、またギリシア語の μαθηματικὴ (τέχνη) に由来し、原義は「学ぶこと」である[19]。
数学という熟語の起源は古い。宋の秦九韶による『数書九章』(1247年)の書名はもとは『数学』だったという[20]。明末には『数学通軌』という書物が出ていて、序文は1578年のものとなっている。和算家たちも古くから数学という熟語を使っていた。関孝和の著に『数学雑著』と題するものがあり、他にも数学という熟語を題字に使っている和算書が複数ある。和算家たちは現在と同じく数学一般という広く高い意味で数学という言葉を使っていた。明治維新後の一時期は漢訳数学書に見られる訳語を手当たり次第に使用したために数学という言葉が現在の算術という意味で使われ狭い意味になったが、その状態は長くは続かなかった。明治15年1月7日、東京数学会社(現、日本数学会)の第14回訳語会にて Unit と Mathematics の2語について2時間以上かけて討議し、Mathematics の訳語を数学とすることが議決された[21][22][23]。この訳語会で菊池大麓は「物の理を論する学問を物理学というように、数の理を論する学問は数理学とするのがよいだろう」と意見を述べ、他には荒川重平による「算学」という訳語を推す意見もあったが、中川将行の原案と岡本則録の案に従って[24]、9名の多数をもって「数学」が採用された。中川の意見「本社名の如きすでに数学と冠するゆえ」が決め手であった[25]。それ以前にも「数学」という語は使われていたが、mathematics の定訳ではなかった。例えば1814年の『諳厄利亜語林大成』では「数学」は arithmetic[注 2] の訳語に用いられ[注 3][26]、mathematics[注 4] には「測度數之学」が当てられている[27]。
定義と対象
数学の範囲と定義については、数学者や哲学者の間で様々な見解がある[28][29]。
数学の研究対象は、量(数)[30]・構造[31]・空間[30]・変化[32][33][34]など多岐にわたる。
19世紀のヨーロッパで集合論が生まれてからは「数学とは何か」ということがあらためて問い直されるようになり(数学基礎論)、数学の対象・方法・文化史的な価値などについて研究する数理哲学も生まれた。
歴史
「数学の起源は人類が農耕を始めたこととの関連が大きい」とも。農作物の分配管理や商取引のための計算、農地管理のための測量、そして農作業の時期を知る暦法のための天文現象の周期性の解明などである。これら三つの必要性は、そのまま数学の大きな三つの区分、構造・空間・変化のそれぞれの研究に大体対応しているといえよう。この時点では、例えば土木工事などの経験から辺の比が 3 : 4 : 5である三角形が直角三角形になることは知られていても、一般に直角三角形の辺の長さの比が c2 = a2 + b2 (c, b, a は辺の長さ)になること(ピタゴラスの定理)は知られていなかった。数学が独立した学問でなく純粋な実用数学であった時代には、あたかも自然科学におけるデータのようにこれらの関係を扱い、例を多数挙げることで正しさを主張するといった手法でもさして問題視されなかった。しかし数は無限に存在するため、沢山の数を調べても完全に証明することはできない。数学が一つの学問として研究されるようになって以降は、論理を用いて真偽を判定する「数学的証明」が発達した。現代の数学でも数学的証明は非常に重視されている。
- 各国での歴史
分類・分野
現代における純粋数学の研究は主に代数学・幾何学・解析学の三分野に大別される。また、これらの数学を記述するのに必要な道具を与える論理を研究する学問を数学基礎論という。
- 基礎付け
- 数学の基礎を明確にすること、あるいは数学そのものを研究することのために、集合論や数理論理学そしてモデル理論は発展してきた。フランスの数学者グループであるニコラ・ブルバキは、集合論による数学の基礎付けを行い、その巨大な体系を『数学原論』として著した。彼らのスタイルはブルバキ主義とよばれ、現代数学の発展に大きな影響をあたえた。個々の対象の持つ性質を中心とする研究方法である集合論とは別の体系として、対象同士の関係性が作るシステムに主眼を置くことにより対象を研究する方法として圏論がある。これはシステムという具体性からコンピュータネットワークなどに応用される一方で、極めて高い抽象性を持つ議論を経て極めて具体的な結果を得るようなアブストラクト・ナンセンスなどと呼ばれる形式性も持ち合わせている。
- 構造
- 数や関数・図形の中の点などの数学的対象の間に成り立つさまざまな関係を形式化・公理化して調べるという立場がダフィット・ヒルベルトやニコラ・ブルバキによって追求された。数の大小関係や演算、点の近さ遠さなどの関係がそれぞれ順序構造や群の構造、位相構造などの概念として公理化され、その帰結が研究される。特に、様々な代数的構造の性質を研究する抽象代数学は20世紀に大きく発展した。現代数学で取り扱われる構造は上のような基本的な構造にとどまらず、異なった種類の構造を併せて考える線型位相空間や双曲群などさまざまなものがある。
- 空間
- 空間の研究は幾何学と共に始まる。初めは、それは身近な三次元におけるユークリッド幾何学や三角法であるが、後にはやはり、一般相対性理論で中心的な役割を演ずる非ユークリッド幾何学に一般化される。長い間未解決だった定規とコンパスによる作図の問題は、最終的にガロア理論によって決着が付いた。現代的な分野である微分幾何学や代数幾何学は幾何学を異なる方向に発展させた:微分幾何学では、座標系や滑らかさ、それに向きの概念が強調されるが、一方で代数幾何学では、代数方程式の解となるような集合を幾何学的な対象とする。集合は数学の基礎を成す重要な概念であるが、幾何学的な側面を強調する場合、集合を空間と言い、その集合の元を点と呼ぶ。群論では対称性という概念を抽象的に研究し、空間と代数構造の研究の間に関連を与える。位相幾何学は連続という概念に着目することで、空間と変化の双方の研究に関係する。
- 解析
- 測る量についての変化を理解し、記述することは自然科学の共通の主題であり、微分積分学はまさにそのための最も有用な道具として発展してきた。変化する量を記述するのに使われる中心的な道具は関数である。多くの問題は、とても自然に量とその変化の割合との関係になり、そのような問題を解くための手法は微分方程式の分野で研究される。連続的な量を表すのに使われる数が実数であり、実数の性質や実数に値をとる関数の性質の詳しい研究は実解析として知られる。いくつかの理由から、複素数に拡張する方が便利であり、それは複素解析において研究される。関数解析学は関数空間(関数の集合に位相構造を持たせたもの)が興味の中心であり、この分野は量子力学やその他多くの学問の基盤となっている。自然の多くの現象は力学系によって記述され、カオス理論では、多くの系が決定可能であるにもかかわらず予測不可能な現れ方をする、という事実を扱う。
- 計算機
- 人類がコンピュータを最初に思いついたとき(それは実際に作られるより遥かに前のことだが)、いくつかの重要な理論的概念は数学者によってかたち作られ、計算可能性理論・計算複雑性理論・情報理論、そしてアルゴリズム情報理論の分野に発展した。これらの問題の内の多くは計算機科学において研究されている。離散数学は計算機科学において有用な数学の分野の総称である。数値解析は、丸め誤差を考慮に入れて、幅広い数学の問題について効率的にコンピュータの上で数値解を求める方法を研究する。また1950年代から2000年代[35]にかけて、計算機科学を駆使して自然科学上の問題を解決する計算科学が急速に発展した。
- 統計
- 応用数学において、重要な分野に統計学が挙げられる。統計学はランダムな現象の記述や解析や予測を可能にし、全ての科学において、利用されている。
以下の分野や項目の一覧は、数学に対する一つの有機的な見方を反映している。
便宜上の分類
- 量
- 数—自然数—整数—偶数—奇数—小数—分数—素数—有理数—無理数—実数—虚数—複素数—四元数—八元数—十六元数—超実数—順序数—基数—濃度—p進数—巨大数—整数列—数学定数—数の名称—無限
- 変化
- 算術—微積分学—ベクトル解析—解析学—微分方程式—力学系—カオス理論—関数一覧
- 構造
- 抽象代数学—数論—代数幾何学—群論—モノイド—解析学—位相幾何学—線型代数学—グラフ理論—圏論
- 空間
- 解析幾何学—位相幾何学—幾何学—三角法—代数幾何学—微分幾何学—線型代数学—フラクタル幾何—図形—図形の一覧—ベクトル解析
- 有限数学
- 組合せ論—素朴集合論—確率論—統計学—計算理論—離散数学—暗号法—暗号理論—グラフ理論
- 数理科学
- 計算科学—数値解析—確率論—逆問題—数理物理学—数理経済学—ゲーム理論[36]—数理生物学—数理心理学—保険数理—数理工学
- 有名な定理と予想
- フェルマーの最終定理—リーマン予想—連続体仮説—P≠NP予想—ゴールドバッハの予想—双子素数の予想—ゲーデルの不完全性定理—ポアンカレ予想—カントールの対角線論法—ピタゴラスの定理—中心極限定理—微積分学の基本定理—代数学の基本定理—四色定理—ツォルンの補題—オイラーの等式—コラッツの予想—合同数の問題—バーチ・スウィンナートン=ダイアー予想—ヒルベルトの23の問題—スメイルの問題—ソファ問題
- 基礎と方法
- 数理哲学—直観主義—数学的構成主義—数学基礎論—集合論—数理論理学—モデル理論—圏論—数学的証明—数学記号の表—逆数学
数学の応用
自然科学
ヴィンチェンツォ・ガリレイは音楽(音程学・音響学)の研究に数学的手法を導入し、その息子ガリレオ・ガリレイは、父の影響を受け、物体の運動の研究(物理学)に数学的手法を導入し、物理学に大きな変革をもたらした。以後、(アイザック・ニュートンの『自然哲学の数学的諸原理』でも、「数学的原理」としており、書物名、タイトルにも顕著にあらわれているが)数学の発展と物理学の発展は密接な関係にある。このほかの自然科学においても数学的な手法は基礎的な要素となっている。
数理モデル
数理モデルは理想化されており、往々にして実際との間には「ずれ」が生じる、という問題はあるが、それでも、そうした分野の研究に、俯瞰的な視点を与え、研究に大きな進歩や高い次元からの洞察をもたらすこともある。
工学の他、社会学や言語学など幅広い分野に応用されている。
思考力の養成
数学教育により抽象的な考えを養うことができるとされ、他分野への恩恵があるという[37]。ドイツの学生は台湾の学生と比較して、モデリングにおける熟考能力が強みとされている[38]。
数学の学際的関係
数学・情報理論・情報物理学
数学と情報と物理性の関係については、計算機科学に基づく「数学的証明」の是非に着目する哲学者たちや(哲学事典)[39]、数理物理学[40][41]・情報物理学に着目する数学博士たちなどが居る(数学書・数理物理学論文)[42][43]。『現代数理科学事典』によれば数学と物理学には相互依存的概念(量子群、偏微分方程式、関数解析学、作用素環論、ファイバー束の主束、群の表現論など)があり、そして両分野は計算機を伴う「情報科学」によって接近をより進めている[44]。20世紀後半以降の「コンピュータ・サイエンスの時代」における数学は、原理と応用を混合的に新発見していると同事典にはある[45]。
数学は、『精選版 日本国語大辞典』では形式科学[10]および自然科学に分類されるが[46]、『スタンフォード哲学百科事典』では自然科学と異なるとされる[39]。同時に上記の哲学事典は、抽象的な数学的対象がイデア(数学的プラトン主義)的であり時空を超えているならば、時空の制限下にある人間が数学的対象に関わりを持てるとは考えにくいというベナセラフの問題(ベナセラフのジレンマ)を載せている[39]。この問題から、数学的プラトン主義への擁護と棄却両方が派生した[39]。また「チャーチのテーゼ」(「自然数上でのアルゴリズム的に計算可能な全ての関数は、チューリング機械によって計算可能である」)および、計算機による数学の証明などは、数学の哲学にとって重要である[39]。上記哲学事典によると、例えば計算機を使うことで1976年に「四色定理」が証明されたが、しかしそのような証明は物理的で経験的な要因(正常に動作するハードウェアやバグの無いソフトウェアなど)に依存していると言えるため、それが本当に「数学的証明」であるかについて哲学的に意見が分かれた[39][注 5]。
ある数学書[50]および記号論理学(数理論理学)の論文は、数学を自然科学としている[51]。上記の論文では、多くの哲学者は数学を「超自然的科学」と捉えているが厳密には数学は自然科学の一種である、とされている[51]。『ネイチャー』の2021年の解説記事は、情報理論や情報熱力学や量子情報科学などにおけるランダウアーの原理について「実験的に実証済みであり、今日では‘information is physical’[情報は物理的である]という考えは自明に見える」と述べている[52]。(日本数学会が編纂した『岩波数学辞典』は情報理論について、情報を「数学的に体系化」し情報機器に必須な「工学的手法」の基礎を成す分野として掲載しており[53]、他の学術文献では情報理論は数学の一分野[54][55]や形式科学の一分野とされている[56]。)
学会・会議
世界各国に存在する数学団体の国際協力を目的として国際数学連合が存在し、2022年時点で80ヶ国以上の数学団体が加盟している[57]。日本においては1877年に設立された東京数学会社が変遷を経た後、1946年に日本数学会となっている[58]。
数学教育
日本
初等教育では「算数」、中等教育では「数学」と表記されている。
学習する分野は、10年ごとに文部科学省から学習指導要領が告示され、その基準に基づいて決定される。
数学に関する賞
- フィールズ賞(国際数学連合)
- ネヴァンリンナ賞(国際数学連合)
- ガウス賞(国際数学連合)
- チャーン賞(国際数学連合)
- アーベル賞(アーベル記念基金)
- 春季賞(日本数学会)
- ヴェブレン賞(アメリカ数学会)
- フランク・ネルソン・コール賞(アメリカ数学会)
- ヨーロッパ数学会賞(ヨーロッパ数学会)
- ウルフ賞数学部門(ウルフ財団)
※「ノーベル数学賞」というものは存在しない。数学に関する賞としては(一般に)フィールズ賞が最高峰とされている。
競技
脚注
注釈
- ^
→詳細は「§ 数学の学際的関係」を参照
- ^ 『諳厄利亜語林大成』における読み仮名は「アリトメテイーク」。
- ^ 『諳厄利亜語林大成』では「算術又數学」の意とされている。
- ^ 『諳厄利亜語林大成』では mathematicks と綴られている。また読み仮名として「マテイマテイツキ」が当てられている。
- ^ 一方で理学博士・数学基礎論研究者[47]の菊池誠の『不完全性定理』(2014年)では、20世紀初めに数学者と哲学者が共に数学の基礎について論じていたが、「今では数学者と哲学者は極めて疎遠である」とされている[48]。また現代の数学基礎論の文脈において不完全性定理は、「哲学的」ではなく、数学基礎論および電子技術的な計算機科学の定理だと同書にはある[49]。
出典
- ^ a b c d e Simpson & Weiner 2004, p. 470.
- ^ a b UCC Library. “Mathematics” (英語). UCC Library LibGuides. University College Cork. 2025年6月19日時点のオリジナルよりアーカイブ。2025年12月30日閲覧。 “According to the Oxford English Dictionary, Mathematics is the "abstract science of number, quantity, and space, either as abstract concepts (pure mathematics), or as applied to other disciplines such as physics and engineering (applied mathematics)"”
- ^ a b c Hipólito 2015, pp. 132–134.
- ^ Hazewinkel 1985, pp. 175–176, 202.
- ^ 松本 & 清水 2021, p. 319.
- ^ 濱田 2015, pp. 81–82.
- ^ Hazewinkel 1985, p. 176.
- ^ Hazewinkel 1985, p. 175.
- ^ “数学”. コトバンク. デジタル大辞泉. 株式会社DIGITALIO・小学館. 2025年12月30日閲覧。
- ^ a b “『精選版 日本国語大辞典』「科学」”. コトバンク. 2025年12月30日閲覧。
- ^ 松田 2021, p. 6.
- ^ ライト, グッドチャイルド & プロクター 2002, p. 66.
- ^ 文部科学省 (2005年). “学科系統分類表 1 大学(学部) 理学:文部科学省”. 文部科学省 - 白書・統計・出版物. 統計情報 - 附属資料 - 学科系統分類表. 文部科学省. 2022年6月17日時点のオリジナルよりアーカイブ。2025年12月30日閲覧。
- ^ 堀 2018, p. 47.
- ^ 野口廣. “数学”. コトバンク. 日本大百科全書(ニッポニカ). 株式会社DIGITALIO・小学館. 2025年12月30日閲覧。
- ^ 飛田武幸. “応用数学”. コトバンク. 改訂新版 世界大百科事典. 株式会社DIGITALIO・平凡社. 2025年12月26日閲覧。
- ^ 数理科学事典編集委員会 1991, p. 1140.
- ^ 数理科学事典編集委員会 1991, pp. 1140–1141.
- ^ “Definition of mathematics”. lexico.com. Oxford University Press. 21 June 2022. 2022年6月21日閲覧.
- ^ 三上義夫『日本数学史』東海書房、1947年、22頁。NDLJP:1063488。
- ^ 和算研究所 編『和算百科』佐藤健一【編集代表】、丸善出版、2017年、259頁。 ISBN 9784621301746。
- ^
- 『東京數學會社雑誌』第四十四號附録、1882年、24-25頁、doi:10.11429/sugakukaisya1877.1882.44sup_1。
- 佐藤健一「明治初期における東京数学会社の訳語会記事(4)」『数学史研究』第167号、日本数学史学会、2000年、34-36頁。上記に掲載された第14回訳語会の様子を読みやすくしたものが掲載されている。
- ^ 東京數學會社雑誌 第51号 1882, pp. 3–8.
- ^ 佐々木 元太郎「幾何用語”合同”と菊池大麓」『日本数学教育学会誌』第76巻、1994年、29-57頁、 ISSN 0021-471X。
- ^ 蟹江 幸博、並木 雅俊『文明開化の数学と物理』岩波書店〈岩波科学ライブラリー 150〉、2008年、4頁。 ISBN 9784000074902。
- ^ 諳厄利亜語林大成 巻之一 1814, p. 62.
- ^ 諳厄利亜語林大成 巻之七 1814, p. 50.
- ^ Mura, Roberta (Dec 1993). “Images of Mathematics Held by University Teachers of Mathematical Sciences”. Educational Studies in Mathematics 25 (4): 375–385.
- ^ Tobies, Renate and Helmut Neunzert (2012). Iris Runge: A Life at the Crossroads of Mathematics, Science, and Industry. Springer. pp. 9. ISBN 3-0348-0229-3. "It is first necessary to ask what is meant by mathematics in general. Illustrious scholars have debated this matter until they were blue in the face, and yet no consensus has been reached about whether mathematics is a natural science, a branch of the humanities, or an art form."
- ^ a b “mathematics, n. : Oxford English Dictionary”. 2015年6月17日閲覧。 “The science of space, number, quantity, and arrangement, whose methods involve logical reasoning and usually the use of symbolic notation, and which includes geometry, arithmetic, algebra, and analysis.”[リンク切れ]
- ^ Kneebone, G.T. (1963). Mathematical Logic and the Foundations of Mathematics: An Introductory Survey. Dover. pp. 4. ISBN 0-486-41712-3. "Mathematics ... is simply the study of abstract structures, or formal patterns of connectedness."
- ^ LaTorre, Donald R., John W. Kenelly, Iris B. Reed, Laurel R. Carpenter, and Cynthia R Harris (2011). Calculus Concepts: An Informal Approach to the Mathematics of Change. Cengage Learning. pp. 2. ISBN 1-4390-4957-2. "Calculus is the study of change—how things change, and how quickly they change."
- ^ Ramana (2007). Applied Mathematics. Tata McGraw–Hill Education. p. 2.10. ISBN 0-07-066753-5. "The mathematical study of change, motion, growth or decay is calculus."
- ^ Ziegler, Günter M. (2011). “What Is Mathematics?”. An Invitation to Mathematics: From Competitions to Research. Springer. pp. 7. ISBN 3-642-19532-6
- ^ “第1回「科学技術の第3の柱『計算科学』」(岩崎洋一 氏 / 筑波大学学長)”. Science Portal - 科学技術の最新情報サイト「サイエンスポータル」. 2022年2月16日閲覧。
- ^ 神取道宏「追悼 ジョン・ナッシュ : 数学者、そして数理科学者として」『経済セミナー』、日本評論社、[要ページ番号]頁、2015年。
- ^ 創業手帳編集部. “駐日ウクライナ大使 セルギー・コルスンスキー/伊藤羊一|IT大国ウクライナの強さと現状【前編】”. 起業・創業・資金調達の創業手帳. 2022年5月25日閲覧。
- ^ Chang, Yu-Ping; Krawitz, Janina; Schukajlow, Stanislaw; Yang, Kai-Lin (2020-04). “Comparing German and Taiwanese secondary school students’ knowledge in solving mathematical modelling tasks requiring their assumptions” (英語). ZDM 52 (1): 59–72. doi:10.1007/s11858-019-01090-4. ISSN 1863-9690.
- ^ a b c d e f “Philosophy of Mathematics”. 2025年12月30日閲覧。
- ^ Leifer 2016, pp. 22–23, 30–31.
- ^ “Dr. Matthew Saul Leifer”. 2025年3月3日時点のオリジナルよりアーカイブ。2025年12月30日閲覧。
- ^ Baez & Stay 2012, pp. 771–772.
- ^ Baez, John C.. “Curriculum Vitae: John C. Baez”. Institute for Mathematical Research. 2025年12月30日時点のオリジナルよりアーカイブ。2025年12月12日閲覧。
- ^ 数理科学事典編集委員会 1991, pp. 163–164.
- ^ 数理科学事典編集委員会 1991, p. 1141.
- ^ “『精選版 日本国語大辞典』「自然科学」”. コトバンク. 2025年12月30日閲覧。
- ^ 菊池 2014, p. 奥付け.
- ^ 菊池 2014, p. 11.
- ^ 菊池 2014, p. iii.
- ^ Razumikhin 2012, p. 1.
- ^ a b Goodman 1990, p. 182.
- ^ Georgescu 2021, p. 770.
- ^ 日本数学会(編) 2011, pp. 546–547.
- ^ Varley 2025, p. 1.
- ^ Zheng 2022, p. 1.
- ^ Dent 2024, p. 36.
- ^ https://www.u-tokyo.ac.jp/focus/ja/articles/z0402_00021.html 「国際数学連合の総裁に選出ー中島啓カブリ数物連携宇宙研究機構教授」東京大学 2022年7月4日 2025年3月1日閲覧
- ^ https://www.mathsoc.jp/overview/committee/president/kamada2023.html 「日本数学会について」日本数学会 2025年3月1日閲覧
参考文献
- 菊池, 誠『不完全性定理』(初版1刷)共立出版、2014年10月25日。 ISBN 978-4320110960。
- 数理科学事典編集委員会『数理科学事典』代表:広中平祐(ハーバード大学)、企画委員:広中平祐、一松信[委員長](東京電機大学)、甘利俊一(東京大学)、伊理正夫(東京大学)、山口昌哉(龍谷大学)、大阪書籍、1991年3月10日。doi:10.11501/13658865。 ISBN 978-4754840044。
- 日本数学会(編)『岩波数学辞典』(第4版第3刷)岩波書店、2011年10月25日。 ISBN 978-4000803090。
- 濱田, 龍義「数学ソフトウェア再考 (数式処理研究の新たな発展)」『数理解析研究所講究録』第1930巻、Research Institute for Mathematical Sciences (RIMS), Kyoto University、2015年1月、80-87頁、 hdl:2433/223554。
- 堀, 寛史「科学的根拠と技能: 理学療法哲学試論」『臨床哲学』第19巻、大阪大学大学院文学研究科臨床哲学研究室、2018年、45-63頁。「理学は科学を指すことばであり、現代では自然科学の基礎研究である物理学、数学、生物学、天文学などを意味する」
- 松田, 稔樹「情報社会の問題解決とデータアナリシス」『Informatio(江戸川大学の情報教育と環境)』第18巻、江戸川大学情報教育研究所、2021年、3–12頁、doi:10.50831/00000994。
- 松本, 昌也、清水, 克彦「高等学校理数探究基礎における実験数学を用いた数学研究方法の基礎的検討: RLAとSRPに基づいた数学探究モデル」『日本科学教育学会年会論文集』第45巻第0号、2021年8月20日、317–320頁、doi:10.14935/jssep.45.0_317。
- ライト, ドーン・J、グッドチャイルド, マイケル・F、プロクター, ジェームス・D「GIS: ツールか科学か?:「ツール」対「科学」, GIS の曖昧さとその解明」『空間・社会・地理思想』第7巻、大阪市立大学文学研究科・文学部地理学教室、2002年、48–66頁、doi:10.1111/0004-5608.872057、 ISSN 1342-3282、 NCID AN10565341。
- Baez, J. C.; Stay, M. (2012). “Algorithmic thermodynamics”. Mathematical Structures in Computer Science (Cambridge University Press) 22 (5): 771-787. doi:10.1017/S0960129511000521.
- Dent, David (December 2024). The Nature of Scientific Innovation, Volume I: Processes, Means and Impact. I (1st ed.). Cham: Springer Nature - Palgrave Macmillan. doi:10.1007/978-3-031-75212-4. ISBN 978-3-031-75211-7
- Georgescu, I. (17 November 2021). “60 years of Landauer’s principle”. Nature Reviews Physics (Springer Nature) 3: 770. doi:10.1038/s42254-021-00400-8. ISSN 2522-5820.
- Goodman, Nicolas D. (1990). “Mathematics as natural science”. The Journal of Symbolic Logic (Association for Symbolic Logic) 55 (1): 182–193. doi:10.2307/2274961. "Mathematics is a natural science whose great generality makes many philosophers think of it as a supernatural science"
- Hazewinkel, Michiel (1985). “Experimental Mathematics”. Mathematical Modelling 6 (3): 175–211. doi:10.1016/0270-0255(85)90044-2. ISSN 0270-0255.
- Hipólito, Inês Viegas (2015). “Abstract Cognition and the Nature of Mathematical Proof”. In Kanzian, Christian; Mitterer, Josef; Neges, Katharina (de, en). Realismus – Relativismus – Konstruktivismus: Beiträge des 38. Internationalen Wittgenstein Symposiums [Realism – Relativism – Constructivism: Contributions of the 38th International Wittgenstein Symposium]. 23. Kirchberg am Wechsel, Austria: Austrian Ludwig Wittgenstein Society. pp. 132–134.
ISSN 1022-3398.
OCLC 236026294. オリジナルのNovember 7, 2022時点におけるアーカイブ。 2024年1月17日閲覧。 (at ResearchGate
Archived November 5, 2022, at the Wayback Machine.)
- Leifer, M. S. (2016). “Mathematics Is Physics”. In Aguirre, Anthony; Foster, Brendan; Merali, Zeeya. Trick or Truth?: The Mysterious Connection Between Physics and Mathematics. The Frontiers Collection. Cham: Springer Nature - Springer International Publishing. pp. 21-40. doi:10.1007/978-3-319-27495-9_3. ISBN 978-3-319-27494-2
- Razumikhin, B. S. (2012). Classical Principles and Optimization Problems. Springer. doi:10.1007/978-94-009-3995-0. ISBN 978-94-010-8273-0
- Simpson, J. A.; Weiner, E. S. C. (2004). The Oxford English Dictionary. 9: Look–Mouke (Reprinted 2004 ed.). Oxford: Clarendon Press. pp. 8,1140. ISBN 978-0-19-861186-8
- Varley, Thomas F. (2025). “Information theory for complex systems scientists: What, why, and how”. Physics Reports 1148 (suppl. C): 1–55. doi:10.1016/j.physrep.2025.09.007. ISSN 0370-1573.
- Zheng, Zhiyong (2022). “Preparatory Knowledge”. Modern Cryptography Volume 1: A Classical Introduction to Informational and Mathematical Principle. Financial Mathematics and Fintech. 1 (1st ed.). Springer Singapore. pp. 1–33. doi:10.1007/978-981-19-0920-7_1. ISBN 978-981-19-0920-7. ISSN 2662-7167. "Modern cryptography and information theory is a branch of mathematics which develops rapidly. Almost all mathematical knowledge, such as algebra, geometry, analysis, probability and statistics, has very important applications in information theory."
- 他
|
この節には参考文献や外部リンクの一覧が含まれていますが、脚注による参照が不十分であるため、情報源が依然不明確です。
|
- 佐藤, 泰夫、佐藤, 純『数学とは何だろう—文化としての数学』森北出版、1998年。
- 川崎, 薩男『数学の序説』共立出版、1980年。 ISBN 978-4-320-01293-6。
- 本木, 正栄、楢林, 高美、吉雄, 永保『諳厄利亜語林大成』 巻之一、1814年、76頁。
- 本木, 正栄、楢林, 高美、吉雄, 永保『諳厄利亜語林大成』 巻之七、1814年、80頁。
- 東京數學會社「東京數學會社雑誌」第51号、東京数学会社、1882年、doi:10.11429/sugakukaisya1877.1882.51_3。
- “Definition of mathematics”. lexico.com. Oxford University Press. 21 June 2022. 2022年6月21日閲覧.
関連項目
- 理学 - 理工学 - 形式科学
- 計算理論
- 数学科
- 数学 (教科)
- 数学史
- 数学者
- 数学者の一覧
- 数学上の未解決問題
- Portal:数学
- プロジェクト:数学/数学に関する記事
- 算数
- 国際数学オリンピック
- 数秘学
外部リンク
- Encyclopedia of Mathematics - 数学に関する約8,000項目の解説が掲載されている。Springer社とヨーロッパ数学会が提供するデータベース
- zbMATH Open - 文献名、著者名、掲載誌名、数式などから検索できる、ヨーロッパ数学会、カールスルーエ学術情報センター、ハイデルベルク学士院が提供するデータベース
- 『数学』 - コトバンク
- mathematicsのページへのリンク