Dual View Random Solved Random Open
OPEN This is open, and cannot be resolved with a finite computation.
There exists a constant $C>0$ such that, for all large $N$, if $A\subseteq \{1,\ldots,N\}$ has size at least $\frac{5}{8}N+C$ then there are distinct $a,b,c\in A$ such that $a+b,a+c,b+c\in A$.
Disclaimer: The open status of this problem reflects the current belief of the owner of this website. There may be literature on this problem that I am unaware of, which may partially or completely solve the stated problem. Please do your own literature search before expending significant effort on solving this problem. If you find any relevant literature not mentioned here, please add this in a comment.
A problem of Erdős and Sós (also earlier considered by Choi, Erdős, and Szemerédi [CES75], but Erdős had forgotten this). Taking all integers in $[N/8,N/4]$ and $[N/2,N]$ shows that $\frac{5}{8}$ would be best possible here.

It is a classical folklore fact that if $A\subseteq \{1,\ldots,2N\}$ has size $\geq N+2$ then there are distinct $a,b\in A$ such that $a+b\in A$, which establishes the $k=2$ case.

In general, one can define $f_k(N)$ to be minimal such that if $A\subseteq \{1,\ldots,N\}$ has size at least $f_k(N)$ then there are $k$ distinct $a_i\in A$ such that all $\binom{k}{2}$ pairwise sums are elements of $A$. Erdős and Sós conjectured that\[f_k(N)\sim \frac{1}{2}\left(1+\sum_{1\leq r\leq k-2}\frac{1}{4^r}\right) N,\]and a similar example shows that this would be best possible.

Choi, Erdős, and Szemerédi [CES75] have proved that, for all $k\geq 3$, there exists $\epsilon_k>0$ such that (for large enough $N$)\[f_k(N)\leq \left(\frac{2}{3}-\epsilon_k\right)N.\]

View the LaTeX source

External data from the database - you can help update this
Formalised statement? No (Create a formalisation here)
Related OEIS sequences: Possible
Likes this problem None
Interested in collaborating None
Currently working on this problem None
This problem looks difficult None
This problem looks tractable None

When referring to this problem, please use the original sources of Erdős. If you wish to acknowledge this website, the recommended citation format is:

T. F. Bloom, Erdős Problem #865, https://www.erdosproblems.com/865, accessed 2026-01-16