Dual View Random Solved Random Open
OPEN This is open, and cannot be resolved with a finite computation. - $250
If $R(k)$ is the Ramsey number for $K_k$, the minimal $n$ such that every $2$-colouring of the edges of $K_n$ contains a monochromatic copy of $K_k$, then find the value of\[\lim_{k\to \infty}R(k)^{1/k}.\]
Disclaimer: The open status of this problem reflects the current belief of the owner of this website. There may be literature on this problem that I am unaware of, which may partially or completely solve the stated problem. Please do your own literature search before expending significant effort on solving this problem. If you find any relevant literature not mentioned here, please add this in a comment.
Erdős offered \$100 for just a proof of the existence of this constant, without determining its value. He also offered \$1000 for a proof that the limit does not exist, but says 'this is really a joke as [it] certainly exists'. (In [Er88] he raises this prize to \$10000). Erdős proved\[\sqrt{2}\leq \liminf_{k\to \infty}R(k)^{1/k}\leq \limsup_{k\to \infty}R(k)^{1/k}\leq 4.\]The upper bound has been improved to $4-\tfrac{1}{128}$ by Campos, Griffiths, Morris, and Sahasrabudhe [CGMS23]. This was improved to $3.7992\cdots$ by Gupta, Ndiaye, Norin, and Wei [GNNW24].

A shorter and simpler proof of an upper bound of the strength $4-c$ for some constant $c>0$ (and a generalisation to the case of more than two colours) was given by Balister, Bollobás, Campos, Griffiths, Hurley, Morris, Sahasrabudhe, and Tiba [BBCGHMST24].

In [Er93] Erdős writes 'I have no idea what the value of $\lim R(k)^{1/k}$ should be, perhaps it is $2$ but we have no real evidence for this.'

This problem is #3 in Ramsey Theory in the graphs problem collection.

See also [1029] for a problem concerning a lower bound for $R(k)$ and discussion of lower bounds in general.

View the LaTeX source

This page was last edited 08 December 2025.

External data from the database - you can help update this
Formalised statement? No (Create a formalisation here)
Related OEIS sequences: A059442
Likes this problem None
Interested in collaborating None
Currently working on this problem None
This problem looks difficult None
This problem looks tractable None

Additional thanks to: Wouter van Doorn

When referring to this problem, please use the original sources of Erdős. If you wish to acknowledge this website, the recommended citation format is:

T. F. Bloom, Erdős Problem #77, https://www.erdosproblems.com/77, accessed 2026-01-16