Dual View Random Solved Random Open
PROVED This has been solved in the affirmative.
Is there some constant $C>0$ such that any graph on $n$ vertices with $\geq Cr^2n$ edges contains a subdivision of $K_r$?
A conjecture of Erdős, Hajnal, and Mader. Dirac [Di60] proved that every graph on $n$ vertices with at least $2n-2$ edges contains a subdivision of $K_4$, and conjectured that $3n-5$ edges forces a subdivision of $K_5$.

Mader [Ma67] proved that $\geq 2^{\binom{r}{2}}n$ edges suffices.

The answer is yes, proved independently by Komlós and Szemerédi [KoSz96] and Bollobás and Thomason [BoTh96].

View the LaTeX source

External data from the database - you can help update this
Formalised statement? No (Create a formalisation here)
Likes this problem None
Interested in collaborating None
Currently working on this problem None
This problem looks difficult None
This problem looks tractable None

When referring to this problem, please use the original sources of Erdős. If you wish to acknowledge this website, the recommended citation format is:

T. F. Bloom, Erdős Problem #718, https://www.erdosproblems.com/718, accessed 2026-01-14