Dual View Random Solved Random Open
PROVED This has been solved in the affirmative. - $250
Let $r\geq 1$ and define $T(n,r)$ to be maximal such that there exists a family $\mathcal{F}$ of subsets of $\{1,\ldots,n\}$ of size $T(n,r)$ such that $\lvert A\cap B\rvert\neq r$ for all $A,B\in \mathcal{F}$.

Estimate $T(n,r)$ for $r\geq 2$. In particular, is it true that for every $\epsilon>0$ there exists $\delta>0$ such that for all $\epsilon n<r<(1/2-\epsilon) n$ we have\[T(n,r)<(2-\delta)^n?\]
It is trivial that $T(n,0)=2^{n-1}$. Frankl and Füredi [FrFu84b] proved that, for fixed $r$ and $n$ sufficiently large in terms of $r$, the maximal $T(n,r)$ is achieved by taking\[\mathcal{F} = \left\{ A\subseteq \{1,\ldots,n\} : \lvert A\rvert> \frac{n+r}{2}\textrm{ or }\lvert A\rvert < r\right\}\]when $n+r$ is odd, and\[\mathcal{F} = \left\{ A\subseteq \{1,\ldots,n\} : \lvert A\backslash \{1\}\rvert\geq \frac{n+r}{2}\textrm{ or }\lvert A\rvert < r\right\}\]when $n+r$ is even. (Frankl [Fr77b] had earlier proved this for $r=1$ and all $n$.)

An affirmative answer to the second question implies that the chromatic number of the unit distance graph in $\mathbb{R}^n$ (with two points joined by an edge if the distance between them is $1$) grows exponentially in $n$, which was proved by alternative methods by Frankl and Wilson [FrWi81] - see [704].

The answer to the second question is yes, proved by Frankl and Rödl [FrRo87].

See also [702].

View the LaTeX source

This page was last edited 16 October 2025.

External data from the database - you can help update this
Formalised statement? No (Create a formalisation here)
Related OEIS sequences: A390645
Likes this problem None
Interested in collaborating None
Currently working on this problem None
This problem looks difficult None
This problem looks tractable None

Additional thanks to: Mehtaab Sawhney

When referring to this problem, please use the original sources of Erdős. If you wish to acknowledge this website, the recommended citation format is:

T. F. Bloom, Erdős Problem #703, https://www.erdosproblems.com/703, accessed 2026-01-16