Dual View Random Solved Random Open
OPEN This is open, and cannot be resolved with a finite computation.
Let $M(n,k)=[n+1,\ldots,n+k]$ be the least common multiple of $\{n+1,\ldots,n+k\}$.

Is it true that for all $m\geq n+k$\[M(n,k) \neq M(m,k)?\]
Disclaimer: The open status of this problem reflects the current belief of the owner of this website. There may be literature on this problem that I am unaware of, which may partially or completely solve the stated problem. Please do your own literature search before expending significant effort on solving this problem. If you find any relevant literature not mentioned here, please add this in a comment.
The Thue-Siegel theorem implies that, for fixed $k$, there are only finitely many $m,n$ such that $m\geq n+k$ and $M(n,k)=M(m,k)$.

In general, how many solutions does $M(n,k)=M(m,l)$ have when $m\geq n+k$ and $l>1$? Erdős expects very few (and none when $l\geq k$).

The only solutions Erdős knew were $M(4,3)=M(13,2)$ and $M(3,4)=M(19,2)$.

In [Er79d] Erdős conjectures the stronger fact that (aside from a finite number of exceptions) if $k>2$ and $m\geq n+k$ then $\prod_{i\leq k}(n+i)$ and $\prod_{i\leq k}(m+i)$ cannot have the same set of prime factors.

See also [678], [686], and [850].

This is discussed in problem B35 of Guy's collection [Gu04].

View the LaTeX source

This page was last edited 30 September 2025.

External data from the database - you can help update this
Formalised statement? Yes
Related OEIS sequences: Possible
Likes this problem Alfaiz
Interested in collaborating None
Currently working on this problem None
This problem looks difficult None
This problem looks tractable None

When referring to this problem, please use the original sources of Erdős. If you wish to acknowledge this website, the recommended citation format is:

T. F. Bloom, Erdős Problem #677, https://www.erdosproblems.com/677, accessed 2026-01-14