Dual View Random Solved Random Open
OPEN This is open, and cannot be resolved with a finite computation.
Is there some constant $c$ such that for every $n$ there are $A_1,\ldots,A_m\subseteq \{1,\ldots,n\}$ such that $\lvert A_i\rvert >n^{1/2}-c$ for all $i$, and $\lvert A_i\cap A_j\rvert \leq 1$ for all $i\neq j$, and every pair $1\leq x<y\leq n$ has $\{x,y\}\subseteq A_i$ for some $i$?
Disclaimer: The open status of this problem reflects the current belief of the owner of this website. There may be literature on this problem that I am unaware of, which may partially or completely solve the stated problem. Please do your own literature search before expending significant effort on solving this problem. If you find any relevant literature not mentioned here, please add this in a comment.
A problem of Erdős and Larson [ErLa82].

Shrikhande and Singhi [ShSi85] have proved that the answer is no conditional on the conjecture that the order of every projective plane is a prime power (see [723]), by proving that every pairwise balanced design on $n$ points in which each block is of size $\geq n^{1/2}-c$ can be embedded in a projective plane of order $n+i$ for some $i\leq c+2$, if $n$ is sufficiently large.

Erdős asks if this is false for constant, for which functions $h(n)$ will the condition $\lvert A_i\rvert \geq n^{1/2}-h(n)$ make the conjecture true?

View the LaTeX source

External data from the database - you can help update this
Formalised statement? No (Create a formalisation here)
Likes this problem None
Interested in collaborating None
Currently working on this problem None
This problem looks difficult None
This problem looks tractable None

When referring to this problem, please use the original sources of Erdős. If you wish to acknowledge this website, the recommended citation format is:

T. F. Bloom, Erdős Problem #665, https://www.erdosproblems.com/665, accessed 2026-01-16