OPEN
This is open, and cannot be resolved with a finite computation.
Let $x_1,\ldots,x_n\in \mathbb{R}^2$ be such that no circle whose centre is one of the $x_i$ contains three other points. Are there at least\[(1+c)\frac{n}{2}\]distinct distances determined between the $x_i$, for some constant $c>0$ and all $n$ sufficiently large?
A problem of Erdős and Pach. It is easy to see that this assumption implies that there are at least $\frac{n-1}{2}$ distinct distances determined by every point.
Zach Hunter has observed that taking $n$ points equally spaced on a circle disproves this conjecture. In the spirit of related conjectures of Erdős and others, presumably some kind of assumption that the points are in general position (e.g. no three on a line and no four on a circle) was intended.
View the LaTeX source
Additional thanks to: Zach Hunter
When referring to this problem, please use the original sources of Erdős. If you wish to acknowledge this website, the recommended citation format is:
T. F. Bloom, Erdős Problem #655, https://www.erdosproblems.com/655, accessed 2026-01-16