Dual View Random Solved Random Open
OPEN This is open, and cannot be resolved with a finite computation.
Let $x_1,\ldots,x_n\in \mathbb{R}^2$ be such that no circle whose centre is one of the $x_i$ contains three other points. Are there at least\[(1+c)\frac{n}{2}\]distinct distances determined between the $x_i$, for some constant $c>0$ and all $n$ sufficiently large?
Disclaimer: The open status of this problem reflects the current belief of the owner of this website. There may be literature on this problem that I am unaware of, which may partially or completely solve the stated problem. Please do your own literature search before expending significant effort on solving this problem. If you find any relevant literature not mentioned here, please add this in a comment.
A problem of Erdős and Pach. It is easy to see that this assumption implies that there are at least $\frac{n-1}{2}$ distinct distances determined by every point.

Zach Hunter has observed that taking $n$ points equally spaced on a circle disproves this conjecture. In the spirit of related conjectures of Erdős and others, presumably some kind of assumption that the points are in general position (e.g. no three on a line and no four on a circle) was intended.

View the LaTeX source

External data from the database - you can help update this
Formalised statement? No (Create a formalisation here)
Related OEIS sequences: Possible
Likes this problem None
Interested in collaborating None
Currently working on this problem None
This problem looks difficult None
This problem looks tractable None

Additional thanks to: Zach Hunter

When referring to this problem, please use the original sources of Erdős. If you wish to acknowledge this website, the recommended citation format is:

T. F. Bloom, Erdős Problem #655, https://www.erdosproblems.com/655, accessed 2026-01-16