OPEN
This is open, and cannot be resolved with a finite computation.
Let $x_1,\ldots,x_n\in \mathbb{R}^2$ and let $R(x_i)=\#\{ \lvert x_j-x_i\rvert : j\neq i\}$, where the points are ordered such that\[R(x_1)\leq \cdots \leq R(x_n).\]Let $g(n)$ be the maximum number of distinct values the $R(x_i)$ can take. Is it true that $g(n) \geq (1-o(1))n$?
Erdős and Fishburn proved $g(n)>\frac{3}{8}n$ and Csizmadia proved $g(n)>\frac{7}{10}n$. Both groups proved $g(n) < n-cn^{2/3}$ for some constant $c>0$.
View the LaTeX source
When referring to this problem, please use the original sources of Erdős. If you wish to acknowledge this website, the recommended citation format is:
T. F. Bloom, Erdős Problem #653, https://www.erdosproblems.com/653, accessed 2026-01-14