Dual View Random Solved Random Open
DISPROVED This has been solved in the negative.
Is there some function $f$ such that for all $k\geq 1$ if a finite graph $G$ has chromatic number $\geq f(k)$ then $G$ has $k$ edge disjoint cycles on the same set of vertices?
A problem of Erdős and Hajnal.

This was resolved in the negative by Janzer, Steiner, and Sudakov [JSS24] - in fact, this fails even at $k=2$. Janzer, Steiner, and Sudakov proved that there exists a constant $c>0$ such that, for all large $n$, there exists a graph on $n$ vertices with chromatic number\[\geq c\frac{\log\log n}{\log\log \log n}\]which contains no $4$-regular subgraph.

View the LaTeX source

External data from the database - you can help update this
Formalised statement? No (Create a formalisation here)
Likes this problem None
Interested in collaborating None
Currently working on this problem None
This problem looks difficult None
This problem looks tractable None

Additional thanks to: Zach Hunter

When referring to this problem, please use the original sources of Erdős. If you wish to acknowledge this website, the recommended citation format is:

T. F. Bloom, Erdős Problem #641, https://www.erdosproblems.com/641, accessed 2026-01-16