Dual View Random Solved Random Open
PROVED This has been solved in the affirmative.
If $G$ is a graph on $n$ vertices which contains no complete graph or independent set on $\gg \log n$ vertices then $G$ contains an induced subgraph on $\gg n$ vertices which contains $\gg n^{1/2}$ distinct degrees.
A problem of Erdős, Faudree, and Sós.

This was proved by Bukh and Sudakov [BuSu07].

Jenssen, Keevash, Long, and Yepremyan [JKLY20] have proved that there must exist an induced subgraph which contains $\gg n^{2/3}$ distinct degrees (with no restriction on the number of vertices).

View the LaTeX source

External data from the database - you can help update this
Formalised statement? No (Create a formalisation here)
Likes this problem None
Interested in collaborating None
Currently working on this problem None
This problem looks difficult None
This problem looks tractable None

Additional thanks to: Zach Hunter

When referring to this problem, please use the original sources of Erdős. If you wish to acknowledge this website, the recommended citation format is:

T. F. Bloom, Erdős Problem #637, https://www.erdosproblems.com/637, accessed 2026-01-16