Dual View Random Solved Random Open
OPEN This is open, and cannot be resolved with a finite computation. - $500
Given $n$ distinct points $A\subset\mathbb{R}^2$ must there be a point $x\in A$ such that\[\#\{ d(x,y) : y \in A\} \gg n^{1-o(1)}?\]Or even $\gg n/\sqrt{\log n}$?
Disclaimer: The open status of this problem reflects the current belief of the owner of this website. There may be literature on this problem that I am unaware of, which may partially or completely solve the stated problem. Please do your own literature search before expending significant effort on solving this problem. If you find any relevant literature not mentioned here, please add this in a comment.
The pinned distance problem, a stronger form of [89]. The example of an integer grid show that $n/\sqrt{\log n}$ would be best possible.

It may be true that there are $\gg n$ many such points, or that this is true on average - for example, if $d(x)$ counts the number of distinct distances from $x$ then in [Er75f] Erdős conjectured\[\sum_{x\in A}d(x) \gg \frac{n^2}{\sqrt{\log n}},\]where $A\subset \mathbb{R}^2$ is any set of $n$ points.

In [Er97e] Erdős offers \$500 for a solution to this problem, but it is unclear whether he intended this for proving the existence of a single such point or for $\gg n$ many such points.

In [Er97e] Erdős wrote that he initially 'overconjectured' and thought that the answer to this problem is the same as for the number of distinct distances between all pairs (see [89]), but this was disproved by Harborth. It could be true that the answers are the same up to an additive factor of $n^{o(1)}$.

The best known bound is\[\gg n^{c-o(1)},\]due to Katz and Tardos [KaTa04], where\[c=\frac{48-14e}{55-16e}=0.864137\cdots.\]

View the LaTeX source

This page was last edited 15 October 2025.

External data from the database - you can help update this
Formalised statement? No (Create a formalisation here)
Related OEIS sequences: Possible
Likes this problem None
Interested in collaborating None
Currently working on this problem None
This problem looks difficult None
This problem looks tractable None

When referring to this problem, please use the original sources of Erdős. If you wish to acknowledge this website, the recommended citation format is:

T. F. Bloom, Erdős Problem #604, https://www.erdosproblems.com/604, accessed 2026-01-16