OPEN
This is open, and cannot be resolved with a finite computation.
Let $(A_i)$ be a family of sets with $\lvert A_i\rvert=\aleph_0$ for all $i$, such that for any $i\neq j$ we have $\lvert A_i\cap A_j\rvert$ finite and $\neq 1$. Is there a $2$-colouring of $\cup A_i$ such that no $A_i$ is monochromatic?
A problem of Komjáth. The existence of such a $2$-colouring is sometimes known as Property B.
View the LaTeX source
When referring to this problem, please use the original sources of Erdős. If you wish to acknowledge this website, the recommended citation format is:
T. F. Bloom, Erdős Problem #602, https://www.erdosproblems.com/602, accessed 2026-01-16