Dual View Random Solved Random Open
DECIDABLE Resolved up to a finite check.
Prove that\[R(C_k,K_n)=(k-1)(n-1)+1\]for $k\geq n\geq 3$ (except when $n=k=3$).
Asked by Erdős, Faudree, Rousseau, and Schelp, who also ask for the smallest value of $k$ such that this identity holds (for fixed $n$). They also ask, for fixed $n$, what is the minimum value of $R(C_k,K_n)$?

This identity was proved for $k>n^2-2$ by Bondy and Erdős [BoEr73]. Nikiforov [Ni05] extended this to $k\geq 4n+2$.

Keevash, Long, and Skokan [KLS21] have proved this identity when $k\geq C\frac{\log n}{\log\log n}$ for some constant $C$, thus establishing the conjecture for sufficiently large $n$.


This problem is #18 in Ramsey Theory in the graphs problem collection.

View the LaTeX source

External data from the database - you can help update this
Formalised statement? No (Create a formalisation here)
Likes this problem None
Interested in collaborating None
Currently working on this problem None
This problem looks difficult None
This problem looks tractable None

When referring to this problem, please use the original sources of Erdős. If you wish to acknowledge this website, the recommended citation format is:

T. F. Bloom, Erdős Problem #551, https://www.erdosproblems.com/551, accessed 2026-01-16