Dual View Random Solved Random Open
OPEN This is open, and cannot be resolved with a finite computation.
Let $r\geq 3$, and let $f_r(N)$ denote the size of the largest subset of $\{1,\ldots,N\}$ such that no subset of size $r$ has the same pairwise greatest common divisor between all elements. Estimate $f_r(N)$.
Disclaimer: The open status of this problem reflects the current belief of the owner of this website. There may be literature on this problem that I am unaware of, which may partially or completely solve the stated problem. Please do your own literature search before expending significant effort on solving this problem. If you find any relevant literature not mentioned here, please add this in a comment.
Erdős [Er64] proved that\[f_r(N) \leq N^{\frac{3}{4}+o(1)},\]and Abbott and Hanson [AbHa70] improved this exponent to $1/2$. Erdős [Er64] proved the lower bound\[f_3(N) > N^{\frac{c}{\log\log N}}\]for some constant $c>0$, and conjectured this should also be an upper bound.

Erdős writes this is 'intimately connected' with the sunflower problem [20]. Indeed, the conjectured upper bound would follow from the following stronger version of the sunflower problem: estimate the size of the largest set of integers $A$ such that $\omega(n)=k$ for all $n\in A$ and there does not exist $a_1,\ldots,a_r\in A$ and an integer $d$ such that $(a_i,a_j)=d$ for all $i\neq j$ and $(a_i/d,d)=1$ for all $i$. The conjectured upper bound for $f_r(N)$ would follow if the size of such an $A$ must be at most $c_r^k$. The original sunflower proof of Erdős and Rado gives the upper bound $c_r^kk!$.

See also [536].

View the LaTeX source

External data from the database - you can help update this
Formalised statement? No (Create a formalisation here)
Related OEIS sequences: Possible
Likes this problem None
Interested in collaborating None
Currently working on this problem None
This problem looks difficult None
This problem looks tractable None

When referring to this problem, please use the original sources of Erdős. If you wish to acknowledge this website, the recommended citation format is:

T. F. Bloom, Erdős Problem #535, https://www.erdosproblems.com/535, accessed 2026-01-16