Dual View Random Solved Random Open
OPEN This is open, and cannot be resolved with a finite computation.
Let $d_k(n)$ be the expected distance from the origin after taking $n$ random steps from the origin in $\mathbb{Z}^k$ (conditional on no self intersections) - that is, a self-avoiding walk. Is it true that\[\lim_{n\to \infty}\frac{d_2(n)}{n^{1/2}}= \infty?\]Is it true that\[d_k(n)\ll n^{1/2}\]for $k\geq 3$?
Disclaimer: The open status of this problem reflects the current belief of the owner of this website. There may be literature on this problem that I am unaware of, which may partially or completely solve the stated problem. Please do your own literature search before expending significant effort on solving this problem. If you find any relevant literature not mentioned here, please add this in a comment.
Slade [Sl87] proved that, for $k$ sufficiently large, $d_k(n)\sim Dn^{1/2}$ for some constant $D>0$ (independent of $k$). Hara and Slade ([HaSl91] and [HaSl92]) proved this for all $k\geq 5$.

For $k=2$ Duminil-Copin and Hammond [DuHa13] have proved that $d_2(n)=o(n)$.

It is now conjectured that $d_k(n)\ll n^{1/2}$ is false for $k=3$ and $k=4$, and more precisely (see for example Section 1.4 of [MaSl93]) that $d_2(n)\sim Dn^{3/4}$, $d_3(n)\sim n^{\nu}$ where $\nu\approx 0.59$, and $d_4(n)\sim D(\log n)^{1/8}n^{1/2}$.

Madras and Slade [MaSl93] have a monograph on the topic of self-avoiding walks.

See also [528].

View the LaTeX source

This page was last edited 27 December 2025.

External data from the database - you can help update this
Formalised statement? No (Create a formalisation here)
Likes this problem None
Interested in collaborating None
Currently working on this problem None
This problem looks difficult None
This problem looks tractable None

Additional thanks to: Terence Tao

When referring to this problem, please use the original sources of Erdős. If you wish to acknowledge this website, the recommended citation format is:

T. F. Bloom, Erdős Problem #529, https://www.erdosproblems.com/529, accessed 2026-01-16