Dual View Random Solved Random Open
PROVED (LEAN) This has been solved in the affirmative and the proof verified in Lean.
Let $M=(a_{ij})$ be a real $n\times n$ doubly stochastic matrix (i.e. the entries are non-negative and each column and row sums to $1$). Does there exist some $\sigma\in S_n$ such that\[\prod_{1\leq i\leq n}a_{i\sigma(i)}\geq n^{-n}?\]
A weaker form of the conjecture of van der Waerden, which states that\[\mathrm{perm}(M)=\sum_{\sigma\in S_n}\prod_{1\leq i\leq n}a_{i\sigma(i)}\geq n^{-n}n!\]with equality if and only if $a_{ij}=1/n$ for all $i,j$.

This conjecture is true, and was proved by Marcus and Minc [MaMi62].

Erdős also conjectured the even weaker fact that there exists some $\sigma\in S_n$ such that $a_{i\sigma(i)}\neq 0$ for all $i$ and\[\sum_{i}a_{i\sigma(i)}\geq 1.\]This weaker statement was proved by Marcus and Ree [MaRe59].

van der Waerden's conjecture itself was proved by Gyires [Gy80], Egorychev [Eg81], and Falikman [Fa81].

View the LaTeX source

External data from the database - you can help update this
Formalised statement? Yes
Likes this problem None
Interested in collaborating None
Currently working on this problem None
This problem looks difficult None
This problem looks tractable None

When referring to this problem, please use the original sources of Erdős. If you wish to acknowledge this website, the recommended citation format is:

T. F. Bloom, Erdős Problem #499, https://www.erdosproblems.com/499, accessed 2026-01-16