Dual View Random Solved Random Open
NOT PROVABLE Open in general, but there exist models of set theory where the result is false. - $100
Under what set theoretic assumptions is it true that $\mathbb{R}^2$ can be $3$-coloured such that, for every uncountable $A\subseteq \mathbb{R}^2$, $A^2$ contains a pair of each colour?
A problem of Erdős from 1954. Sierpinski and Kurepa independently proved that this is true for $2$-colours. Erdős proved that this is true under the continuum hypothesis that $\mathfrak{c}=\aleph_1$, and offered \$100 for deciding what happens if the continuum hypothesis is not assumed.

Shelah proved that it is consistent that the answer is negative, although with a very large value of $\mathfrak{c}$. It remains open whether it is consistent to have a negative answer assuming $\mathfrak{c}=\aleph_2$.

View the LaTeX source

External data from the database - you can help update this
Formalised statement? No (Create a formalisation here)
Likes this problem None
Interested in collaborating None
Currently working on this problem None
This problem looks difficult None
This problem looks tractable None

When referring to this problem, please use the original sources of Erdős. If you wish to acknowledge this website, the recommended citation format is:

T. F. Bloom, Erdős Problem #474, https://www.erdosproblems.com/474, accessed 2026-01-14