Dual View Random Solved Random Open
DISPROVED This has been solved in the negative.
Is it true that, if $A\subseteq \mathbb{N}$ is sparse enough and does not cover all residue classes modulo $p$ for any prime $p$, then there exists some $n$ such that $n+a$ is prime for all $a\in A$?
Weisenberg [We24] has shown the answer is no: $A$ can be arbitrarily sparse and missing at least one residue class modulo every prime $p$, and yet $A+n$ is not contained in the primes for any $n\in \mathbb{Z}$. (Weisenberg gives several constructions of such an $A$.)

View the LaTeX source

External data from the database - you can help update this
Formalised statement? No (Create a formalisation here)
Likes this problem None
Interested in collaborating None
Currently working on this problem None
This problem looks difficult None
This problem looks tractable None

When referring to this problem, please use the original sources of Erdős. If you wish to acknowledge this website, the recommended citation format is:

T. F. Bloom, Erdős Problem #429, https://www.erdosproblems.com/429, accessed 2026-01-16