Dual View Random Solved Random Open
OPEN This is open, and cannot be resolved with a finite computation.
Let $A=\{a_1<\cdots<a_k\}$ be a finite set of integers and extend it to an infinite sequence $\overline{A}=\{a_1<a_2<\cdots \}$ by defining $a_{n+1}$ for $n\geq k$ to be the least integer exceeding $a_n$ which is not of the form $a_i+a_j$ with $i,j\leq n$. Is it true that the sequence of differences $a_{m+1}-a_m$ is eventually periodic?
Disclaimer: The open status of this problem reflects the current belief of the owner of this website. There may be literature on this problem that I am unaware of, which may partially or completely solve the stated problem. Please do your own literature search before expending significant effort on solving this problem. If you find any relevant literature not mentioned here, please add this in a comment.
An old problem of Dickson. Even a starting set as small as $\{1,4,9,16,25\}$ requires thousands of terms before periodicity occurs.

This problem is discussed under Problem 7 on Green's open problems list.

View the LaTeX source

External data from the database - you can help update this
Formalised statement? No (Create a formalisation here)
Likes this problem None
Interested in collaborating None
Currently working on this problem None
This problem looks difficult None
This problem looks tractable None

Additional thanks to: Desmond Weisenberg

When referring to this problem, please use the original sources of Erdős. If you wish to acknowledge this website, the recommended citation format is:

T. F. Bloom, Erdős Problem #341, https://www.erdosproblems.com/341, accessed 2026-01-14