Dual View Random Solved Random Open
PROVED This has been solved in the affirmative.
Let $N\geq 1$ and let $t(N)$ be the least integer $t$ such that there is no solution to\[1=\frac{1}{n_1}+\cdots+\frac{1}{n_k}\]with $t=n_1<\cdots <n_k\leq N$. Estimate $t(N)$.
Erdős and Graham [ErGr80] could show\[t(N)\ll\frac{N}{\log N},\]but had no idea of the true value of $t(N)$.

Solved by Liu and Sawhney [LiSa24] (up to $(\log\log N)^{O(1)}$), who proved that\[\frac{N}{(\log N)(\log\log N)^3(\log\log\log N)^{O(1)}}\ll t(N) \ll \frac{N}{\log N}.\]

View the LaTeX source

This page was last edited 18 November 2025.

External data from the database - you can help update this
Formalised statement? No (Create a formalisation here)
Related OEIS sequences: Possible
Likes this problem None
Interested in collaborating None
Currently working on this problem None
This problem looks difficult None
This problem looks tractable None

When referring to this problem, please use the original sources of Erdős. If you wish to acknowledge this website, the recommended citation format is:

T. F. Bloom, Erdős Problem #294, https://www.erdosproblems.com/294, accessed 2026-01-16