Dual View Random Solved Random Open
PROVED This has been solved in the affirmative.
Is it true that for every $\epsilon>0$ and integer $t\geq 1$, if $N$ is sufficiently large and $A$ is a subset of $[t]^N$ of size at least $\epsilon t^N$ then $A$ must contain a combinatorial line $P$ (a set $P=\{p_1,\ldots,p_t\}$ where for each coordinate $1\leq j\leq t$ the $j$th coordinate of $p_i$ is either $i$ or constant).
The 'density Hales-Jewett' problem. This was proved by Furstenberg and Katznelson [FuKa91]. A new elementary proof, which gives quantitative bounds, was proved by the Polymath project [Po09].

View the LaTeX source

External data from the database - you can help update this
Formalised statement? No (Create a formalisation here)
Related OEIS sequences: A156989
Likes this problem None
Interested in collaborating None
Currently working on this problem None
This problem looks difficult None
This problem looks tractable None

When referring to this problem, please use the original sources of Erdős. If you wish to acknowledge this website, the recommended citation format is:

T. F. Bloom, Erdős Problem #171, https://www.erdosproblems.com/171, accessed 2026-01-16