Dual View Random Solved Random Open
PROVED This has been solved in the affirmative.
A minimal cut of a graph is a minimal set of vertices whose removal disconnects the graph. Let $c(n)$ be the maximum number of minimal cuts a graph on $n$ vertices can have.

Does $c(n)^{1/n}\to \alpha$ for some $\alpha <2$?
Asked by Erdős and Nešetřil, who also ask whether $c(3m+2)=3^m$. Seymour observed that $c(3m+2)\geq 3^m$, as seen by the graph of $m$ independent paths of length $4$ joining two vertices.

Solved by Bradač [Br24], who proved that $\alpha=\lim c(n)^{1/n}$ exists and\[\alpha \leq 2^{H(1/3)}=1.8899\cdots,\]where $H(\cdot)$ is the binary entropy function. Seymour's construction proves that $\alpha\geq 3^{1/3}=1.442\cdots$. Bradač conjectures that this lower bound is the true value of $\alpha$.

View the LaTeX source

External data from the database - you can help update this
Formalised statement? No (Create a formalisation here)
Related OEIS sequences: Possible
Likes this problem None
Interested in collaborating None
Currently working on this problem None
This problem looks difficult None
This problem looks tractable None

When referring to this problem, please use the original sources of Erdős. If you wish to acknowledge this website, the recommended citation format is:

T. F. Bloom, Erdős Problem #150, https://www.erdosproblems.com/150, accessed 2026-01-16