Dual View Random Solved Random Open
PROVED This has been solved in the affirmative.
Let $f(m)$ be maximal such that every graph with $m$ edges must contain a bipartite graph with\[\geq \frac{m}{2}+\frac{\sqrt{8m+1}-1}{8}+f(m)\]edges. Is there an infinite sequence of $m_i$ such that $f(m_i)\to \infty$?
Conjectured by Erdős, Kohayakava, and Gyárfás. Edwards [Ed73] proved that $f(m)\geq 0$ always. Note that $f(\binom{n}{2})= 0$, taking $K_n$. Solved by Alon [Al96], who showed $f(n^2/2)\gg n^{1/2}$, and also showed that $f(m)\ll m^{1/4}$ for all $m$. The best possible constant in $f(m)\leq Cm^{1/4}$ is unknown.

View the LaTeX source

External data from the database - you can help update this
Formalised statement? No (Create a formalisation here)
Related OEIS sequences: Possible
Likes this problem None
Interested in collaborating None
Currently working on this problem None
This problem looks difficult None
This problem looks tractable None

When referring to this problem, please use the original sources of Erdős. If you wish to acknowledge this website, the recommended citation format is:

T. F. Bloom, Erdős Problem #127, https://www.erdosproblems.com/127, accessed 2026-01-16