Dual View Random Solved Random Open
OPEN This is open, and cannot be resolved with a finite computation.
Let $f_d(n)$ be minimal such that in any collection of $n$ points in $\mathbb{R}^d$, all of distance at least $1$ apart, there are at most $f_d(n)$ many pairs of points which are distance $1$ apart. Estimate $f_d(n)$.
Disclaimer: The open status of this problem reflects the current belief of the owner of this website. There may be literature on this problem that I am unaware of, which may partially or completely solve the stated problem. Please do your own literature search before expending significant effort on solving this problem. If you find any relevant literature not mentioned here, please add this in a comment.
It is easy to see that $f_1(n)=n-1$ and $f_2(n)<3n$ (since there can be at most $6$ points of distance $1$ from any point). Erdős [Er46b] showed\[f_2(n)<3n-cn^{1/2}\]for some constant $c>0$, which the triangular lattice shows is the best possible up to the value of $c$. In [Er75f] he speculated that the triangular lattice is exactly the best possible, and in particular\[f_2(3n^2+3n+1)=9n^2+6n.\]In [Er75f] he claims the existence of $c_1,c_2>0$ such that\[6n-c_1n^{2/3}< f_3(n) < 6n-c_2n^{2/3}.\]See [223] for the analogous problem with maximal distance $1$.

View the LaTeX source

This page was last edited 15 October 2025.

External data from the database - you can help update this
Formalised statement? Yes
Related OEIS sequences: Possible
Likes this problem None
Interested in collaborating None
Currently working on this problem None
This problem looks difficult None
This problem looks tractable None

When referring to this problem, please use the original sources of Erdős. If you wish to acknowledge this website, the recommended citation format is:

T. F. Bloom, Erdős Problem #1084, https://www.erdosproblems.com/1084, accessed 2026-01-16