Academia.eduAcademia.edu

Neural network classification using error entropy minimization

2005, Biological and Artificial Intelligence Environments

Abstract

One way of using the entropy criteria in learning systems is to minimize the entropy of the error between two variables: typically, one is the output of the learning system and the other is the target. This framework has been used for regression. In this paper we show how to use the minimization of the entropy of the error for classification. The minimization of the entropy of the error implies a constant value for the errors. This, in general, does not imply that the value of the errors is zero. In regression, this problem is solved by making a shift of the final result such that it's average equals the average value of the desired target. We prove that, under mild conditions, this algorithm, when used in a classification problem, makes the error converge to zero and can thus be used in classification.