Academia.edu no longer supports Internet Explorer.
To browse Academia.edu and the wider internet faster and more securely, please take a few seconds to upgrade your browser.
2015, Hypertension
Obesity and hypertension are major risk factors for cardiovascular diseases, and their growing coexistence accounts for an increase in adverse cardiac events, but the mechanisms are yet to be determined. We hypothesized that obesity exacerbates mitochondrial dysregulation imposed by hypertension and augments left ventricular dysfunction. Obesity-prone Ossabaw pigs were randomized to lean (standard diet) and obese (high-fat diet), without (Lean-sham and Obese-sham) or with renovascular hypertension (Lean-hypertension and Obese-hypertension), induced after 12 weeks of diet (n=7 each). Cardiac function, myocardial perfusion and oxygenation, and microvascular remodeling were assessed 4 weeks later. Mitochondrial biogenesis signals and structural proteins, respiratory chain complex activities, and mitochondrial self-degradation were examined, as was fibrosis. Obesity alone exerted no apparent effect on mitochondrial dynamics, but aggravated in hypertensive hearts the reduction of mitocho...
Current Hypertension Reports, 2017
Mitochondria are essential for the maintenance of normal physiological function of tissue cells. Mitochondria are subject to dynamic processes in order to establish a control system related to survival or cell death and adaptation to changes in the metabolic environment of cells. Mitochondrial dynamics includes fusion and fission processes, biogenesis, and mitophagy. Modifications of mitochondrial dynamics in organs involved in energy metabolism such as the pancreas, liver, skeletal muscle, and white adipose tissue could be of relevance for the development of insulin resistance, obesity, and type 2 diabetes. Mitochondrial dynamics and the factors involved in its regulation are also critical for neuronal development, survival, and function. Modifications in mitochondrial dynamics in either agouti-related peptide (AgRP) or pro-opiomelanocortin (POMC), circuits which regulates feeding behavior, are related to changes of food intake, energy balance, and obesity development. Activation of the sympathetic nervous system has been considered as a crucial point in the pathogenesis of hypertension among obese individuals and it also plays a key role in cardiac remodeling. Hypertension-related cardiac hypertrophy is associated with changes in metabolic substrate utilization, dysfunction of the electron transport chain, and ATP synthesis. Alterations in both mitochondrial dynamics and ROS production have been associated with endothelial dysfunction, development of hypertension, and cardiac hypertrophy. Finally, it might be postulated that alterations of mitochondrial dynamics in white adipose tissue could contribute to the development and maintenance of hypertension in obesity situations through leptin overproduction. Leptin, together with insulin, will induce activation of sympathetic nervous system with consequences at renal, vascular, and cardiac levels, driving to sodium retention, hypertension, and left ventricular hypertrophy. Moreover, both leptin and insulin will induce mitochondrial alterations into arcuate nucleus leading to signals driving to increased food intake and reduced energy expenditure. This, in turn would perpetuate white adipose tissue excess and its wellknown metabolic and cardiovascular consequences.
Basic Research in Cardiology, 2011
Elevated levels of cardiac mitochondrial uncoupling protein 3 (UCP3) and decreased cardiac efficiency (hydraulic power/oxygen consumption) with abnormal cardiac function occur in obese, diabetic mice. To determine whether cardiac mitochondrial uncoupling occurs in non-genetic obesity, we fed rats a high fat diet (55% kcal from fat) or standard laboratory chow (7% kcal from fat) for 3 weeks, after which we measured cardiac function in vivo using cine MRI, efficiency in isolated working hearts and respiration rates and ADP/O ratios in isolated interfibrillar mitochondria; also, measured were medium chain acyl-CoA dehydrogenase (MCAD) and citrate synthase activities plus uncoupling protein 3 (UCP3), mitochondrial thioesterase 1 (MTE-1), adenine nucleotide translocase (ANT) and ATP synthase protein levels. We found that in vivo cardiac function was the same for all rats, yet oxygen consumption was 19% higher in high fatfed rat hearts, therefore, efficiency was 21% lower than in controls. We found that mitochondrial fatty acid oxidation rates were 25% higher, and MCAD activity was 23% higher, in hearts from rats fed the high fat diet when compared with controls. Mitochondria from high fat-fed rat hearts had lower ADP/O ratios than controls, indicating increased respiratory uncoupling, which was ameliorated by GDP, a UCP3 inhibitor. Mitochondrial UCP3 and MTE-1 levels were both increased by 20% in high fat-fed rat hearts when compared with controls, with no significant change in ATP synthase or ANT levels, or citrate synthase activity. We conclude that increased cardiac oxygen utilisation, and thereby decreased cardiac efficiency, occurs in non-genetic obesity, which is associated with increased mitochondrial uncoupling due to elevated UCP3 and MTE-1 levels.
AJP: Heart and Circulatory Physiology, 2009
A high-fat diet can increase adiposity, leptin secretion, and plasma fatty acid concentration. In hypertension, this scenario may accelerate cardiac hypertrophy and development of heart failure but could be protective by activating peroxisome proliferator-activated receptors and expression of mitochondrial oxidative enzymes. We assessed the effects of a high-fat diet on the development of left ventricular hypertrophy, remodeling, contractile dysfunction, and the activity of mitochondrial oxidative enzymes. Mice ( n = 10–12/group) underwent transverse aortic constriction (TAC) or sham surgery and were fed either a low-fat diet (10% of energy intake as fat) or a high-fat diet (45% fat) for 6 wk. The high-fat diet increased adipose tissue mass and plasma leptin and insulin. Left ventricular mass and chamber size were unaffected by diet in sham animals. TAC increased left ventricular mass (∼70%) and end-systolic and end-diastolic areas (∼100% and ∼45%, respectively) to the same extent i...
The Journal of physiology, 2007
Steady state concentrations of ATP and ADP in vivo are similar at low and high cardiac workloads; however, the mechanisms that regulate the activation of substrate metabolism and oxidative phosphorylation that supports this stability are poorly understood. We tested the hypotheses that (1) there is parallel activation of mitochondrial and cytosolic dehydrogenases in the transition from low to high workload, which increases NADH/NAD+ ratio in both compartments, and (2) this response does not require an increase in fatty acid oxidation (FAO). Anaesthetized pigs were subjected to either sham treatment, or an abrupt increase in cardiac workload for 5 min with dobutamine infusion and aortic constriction. Myocardial oxygen consumption and FAO were increased 3- and 2-fold, respectively, but ATP and ADP concentrations did not change. NADH-generating pathways were rapidly activated in both the cytosol and mitochondria, as seen in a 40% depletion in glycogen stores, a 3.6-fold activation of p...
Current Pharmaceutical Design, 2019
Background: Cardiovascular diseases (CVDs) are a leading risk factor for mortality worldwide and the number of CVDs victims is predicted to rise through 2030. While several external parameters (genetic, behavioral, environmental and physiological) contribute to cardiovascular morbidity and mortality; intrinsic metabolic and functional determinants such as insulin resistance, hyperglycemia, inflammation, high blood pressure and dyslipidemia are considered to be dominant factors. Methods: Pubmed searches were performed using different keywords related with mitochondria and cardiovascular disease and risk. In vitro, animal and human results were extracted from the hits obtained. Results: High cardiac energy demand is sustained by mitochondrial ATP production, and abnormal mitochondrial function has been associated with several lifestyle- and aging-related pathologies in the developed world such as diabetes, non-alcoholic fatty liver disease (NAFLD) and kidney diseases, that in turn can...
Proteomics, 2008
Hypertension now affects about 600 million people worldwide and is a leading cause of death in the Western world. The spontaneously hypertensive rat (SHR), provides a useful model to investigate hypertensive heart failure (HF). The SHR model replicates the clinical progression of hypertension in humans, wherein early development of hypertension is followed by a long stable period of compensated cardiac hypertrophy that slowly progresses to HF. Although the hypertensive failing heart generally shows increased substrate preference towards glucose and impaired mitochondrial function, the cause-and-effect relationship between these characteristics is incompletely understood. To explore these pathogenic processes, we compared cardiac mitochondrial proteomes of 20-month-old SHR and Wistar-Kyoto controls by iTRAQ ™ -labelling combined with multidimensional LC/MS/MS. Of 137 high-scoring proteins identified, 79 differed between groups. Changes were apparent in several metabolic pathways, chaperone and antioxidant systems, and multiple subunits of the oxidative phosphorylation complexes were increased (complexes I, III and IV) or decreased (complexes II and V) in SHR heart mitochondria. Respiration assays on skinned fibres and isolated mitochondria showed markedly lower respiratory capacity on succinate. Enzyme activity assays often also showed mismatches between increased protein expression and activities suggesting elevated protein expression may be compensatory in the face of pathological stress.
Antioxidants
Obesity and hypertension are health problems of increasing prevalence in developed countries. The link between obesity and hypertension is not yet fully determined. Oxidative stress (OS) and mitochondrial function may play a role in obesity-associated hypertension. A cross-sectional study with 175 subjects with normal weight, overweight, or obese who attended a medical check-up was included. The subjects were divided according to the body mass index (BMI) into normal-weight (n-53), overweight (n-84), and obesity (n-38). Hypertension was also evaluated. To measure mitochondrial function, ATP hydrolysis and ATP synthesis in platelets and serum, respectively, were determined. Superoxide dismutase (SOD), catalase, lipohydroperoxides, 8-isoprostanes, carbonyl groups in proteins, nitric oxide (NO) metabolites, 8-hydroxy-2′-deoxyguanosine (8-OHG), 8-oxoguanine glycosylase (hOGG1), tumor necrosis factor-alpha (TNF-α) and interleukin 6 (IL-6) were measured by standard colorimetric or immunoa...
AJP: Heart and Circulatory Physiology, 2006
Lipid accumulation in nonadipose tissue due to enhanced circulating fatty acids may play a role in the pathophysiology of heart failure, obesity, and diabetes. Accumulation of myocardial lipids and related intermediates, e.g., ceramide, is associated with decreased contractile function, mitochondrial oxidative phosphorylation, and electron transport chain (ETC) complex activities. We tested the hypothesis that the progression of heart failure would be exacerbated by elevated myocardial lipids and an associated ceramide-induced inhibition of mitochondrial oxidative phosphorylation and ETC complex activities. Heart failure (HF) was induced by coronary artery ligation. Rats were then randomly assigned to either a normal (10% kcal from fat; HF, n = 8) or high saturated fat diet (60% kcal from saturated fat; HF + Sat, n = 7). Sham-operated animals (sham; n = 8) were fed a normal diet. Eight weeks postligation, left ventricular (LV) function was assessed by echocardiography and catheteriz...
Antioxidants & Redox Signaling, 2013
Significance: Mitochondria are dynamic organelles capable of changing their shape and distribution by undergoing either fission or fusion. Changes in mitochondrial dynamics, which is under the control of specific mitochondrial fission and fusion proteins, have been implicated in cell division, embryonic development, apoptosis, autophagy, and metabolism. Although the machinery for modulating mitochondrial dynamics is present in the cardiovascular system, its function there has only recently been investigated. In this article, we review the emerging role of mitochondrial dynamics in cardiovascular health and disease. Recent Advances: Changes in mitochondrial dynamics have been implicated in vascular smooth cell proliferation, cardiac development and differentiation, cardiomyocyte hypertrophy, myocardial ischemia-reperfusion injury, cardioprotection, and heart failure. Critical Issues: Many of the experimental studies investigating mitochondrial dynamics in the cardiovascular system have been confined to cardiac cell lines, vascular cells, or neonatal cardiomyocytes, in which mitochondria are distributed throughout the cytoplasm and are free to move. However, in the adult heart where mitochondrial movements are restricted by their tightly-packed distribution along myofibrils or beneath the subsarcolemma, the relevance of mitochondrial dynamics is less obvious. The investigation of transgenic mice deficient in cardiac mitochondrial fission or fusion proteins should help elucidate the role of mitochondrial dynamics in the adult heart. Future Directions: Investigating the role of mitochondrial dynamics in cardiovascular health and disease should result in the identification of novel therapeutic targets for treating patients with cardiovascular disease, the leading cause of death and disability globally. Antioxid. Redox Signal. 19, 400-414.
Clinical Nutrition, 2017
Background: The cellular mechanisms of obesity-induced cardiomyopathy are multiple and not completely elucidated. The objective of this study was to differentiate two obesity-associated cardiomyopathy miniature pig models: one with the metabolic syndrome (MetS), and one with a metabolically healthy obesity (MHO). The cellular responses during the development of obesity-induced cardiomyopathy were investigated. Methods: Five-month-old Lee-Sung (MetS) and Lanyu (MHO) minipigs were made obese by feeding a high-fat diet (HFD) for 6 months. Results: Obese pigs exhibited a greater heart weight than control pigs. Interstitial and perivascular fibrosis developed in the myocardium of obese pigs. The HFD induced cardiac lipid accumulation and oxidative stress and also decreased the antioxidant defense in MetS pigs. This diet activated oxidative stress without changing cardiac antioxidant defense and lipid content in MHO pigs. The HFD upregulated the expression of Grp94, CHOP, caspase 12, p62, and LC3II, and increased the ratio of LC3II to LC3I in the left ventricle (LV) of MetS pigs. Compared to obese MetS pigs, less Grp94 and elevated CHOP expression was found in the obese MHO heart. The HFD did not change the ratio of LC3II to LC3I and p62 expression in obese MHO pigs. The obese MetS pigs had an extensive and greater inflammatory response in the plasma than the obese MHO pigs, which had a lesser and milder inflammation. Conclusion: Oxidative stress and ER stress were involved in the progression of MHO-related cardiomyopathy. Inflammation, autophagy, ER stress, oxidative stress, and lipotoxicity participated in the pathological mechanism of MetS-related cardiomyopathy.
OCL, 2015
The aim of our study was to know whether high dietary energy intake (HDEI) with equilibrated and unbalanced diets in term of lipid composition modify the fatty acid profile of cardiac phospholipids and function of various cardiac cells and to know if the changes in membrane lipid composition can explain the modifications of cellular activity. Wistar rats were fed either a control or high-fat (HF) diet for 12 weeks and Zucker diabetic fatty (ZDF) rats as well as their lean littermate (ZL) a control diet between week 7 to 11 of their life. Energy intake and abdominal obesity was increased in HF-fed and ZDF rats. Circulating lipids were also augmented in both strains although hyperglycemia was noticed only in ZDF rats. HDEI induced a decrease in linoleate and increase in arachidonate in membrane phospholipids which was more pronounced in the ZDF rats compared to the HF-fed rats. In vivo cardiac function (CF) was improved in HF-fed rats whereas ex vivo cardiac function was unchanged, suggesting that environmental factors such as catecholamines stimulated the in vivo CF. The unchanged ex vivo CF was associated with an increased cardiac mass which indicated development of fibrosis and/or hypertrophy. The increased in vivo CF was sustained by an augmented coronary reserve which was related to the cyclooxygenase pathway and accumulation of arachidonate in membrane phospholipids. In conclusion, before triggering a diabetic cardiomyopathy, HDEI stimulated the CF. The development of cardiomyopathy seems to result from fibrosis and/or hypertrophy which augments myocardial stiffness and decreases contractility. Keywords: High dietary energy intake / abdominal adiposity / myocardial function / phospholipid composition / arachidonic acid / coronary reserve Résumé-Évolution du stade de l'activation mécanique jusqu'à la cardiomyopathie chez le rat rendu obèse par des régimes équilibré en graisses ou riche en acides gras saturés et mono-insaturés. Notre objectif a été de savoir si l'excès calorique (EC) modifie la composition en acides gras des phospholipides et la fonction cardiaques et si ces modifications des membranes expliquent les changements d'activité des cellules cardiaques. Des rats Wistar ont été nourris soit avec un régime contrôle, soit avec un régime riche en graisse (RRG) pendant 12 semaines et des rats Zucker diabétiques gras (ZDF) ainsi que leurs homologues maigres (ZL) avec un régime contrôle entre leur 7 e et 11 e semaine de vie. L'ingestion calorique et l'obésité abdominale ont été augmentées chez les rats RRG et ZDF. Une hyperlipidémie a été observée dans les 2 souches, mais l'hyperglycémie n'a été observée que chez les animaux ZDF. L'EC a provoqué une diminution en linoléate et une augmentation en arachidonate dans les membranes cardiaques qui a été plus prononcée chez les rats ZDF. La fonction cardiaque (FC) in vivo a été plus élevée chez les rats RRG malgré une FC ex vivo inchangée. Les catécholamines circulantes pourraient expliquer les discordances. La stabilité de la FC ex vivo a été associée à une augmentation de la masse cardiaque suggérant le développement d'une fibrose et/ou d'une hypertrophie. L'augmentation de la FC in vivo a été soutenue par un
Journal of the American Heart Association, 2016
Renovascular hypertension (RVH) impairs cardiac structure and left ventricular (LV) function, but whether mitochondrial injury is implicated in RVH-induced myocardial damage and dysfunction has not been defined. We hypothesized that cardiac remodeling in swine RVH is partly attributable to cardiac mitochondrial injury. After 12 weeks of hypercholesterolemic (HC)-RVH or control (n=14 each), pigs were treated for another 4 weeks with vehicle or with the mitochondrial-targeted peptide (MTP), Bendavia (0.1 mg/kg subcutaneously, 5 days/week), which stabilizes mitochondrial inner-membrane cardiolipin (n=7 each). Cardiac function was subsequently assessed by multidetector-computed tomography and oxygenation by blood-oxygen-level-dependent magnetic resonance imaging. Cardiolipin content, mitochondrial biogenesis, as well as sarcoplasmic-reticulum calcium cycling, myocardial tissue injury, and coronary endothelial function were assessed ex vivo. Additionally, mitochondrial cardiolipin conten...
Acta veterinaria, 2006
Cardiovascular diseases are often associated with energy deficit and in many cases this is also accompanied by lipid disorders such as hyperlipidemias and obesity. The aim of the study was to check mitochondrial oxidative capacity in the course of twelve weeks atherogenic hypercholesterolic diet. Thirty five Chinchilla rabbits, male, were randomized to one of two groups: a control group (A, n=17) received (per os) physiological saline; experimental group (B, n=18) received atherogenic 2% hypercholesterolemic diet. Isolation of the mitochondrial fraction of the heart was done by the method of Tyler. The oxygen consumption rate was studied in different respiration phases: as basal, unstimulated (V 4) and as ADP-stimulated (V 3), and expressed as indices: respiratory control ratio (RCR) and ADP/O. Hypercholesterolemic atherogenic diet induced profound perturbations in mitochondrial energy metabolism and oxidative capacity. Basal oxygen consumption rate without ADP (V 4) and the maximal ADP-stimulated respiration rate (V 3) showed a marked reduction (quantitative changes); sensibility of mitochondria to ADP (ADP/O) was also reduced (qualitative change) in rabbits treated by atherogenic diet (group B) compared to controls (group A). Respiratory control ratio was not significantly different among the groups. These results indicate that hypercholesterolemic atherogenic diet impairs mitochondrial oxidative capacity without affecting coupling of oxidative and phosphorilative processes.
The Journal of Nutritional Biochemistry, 2014
Nutritional transition has contributed to growing obesity, mainly by changing eating habits of the population. The mechanisms by which diet-induced obesity leads to cardiac injury are not completely understood, but it is known that obesity is associated to impaired cardiac function and energy metabolism, increasing morbidity and mortality. Therefore, our study aimed to investigate the mechanisms underlying cardiac metabolism impairment related to Western diet-induced obesity. After weaning, male Swiss mice were fed a Western diet for 16 weeks in order to induce obesity. After this period, the content of proteins involved in heart energy metabolism GLUT1, cytosolic lysate and plasma membrane GLUT4, AMPK, pAMPK, IRβ, IRS-1, PGC-1α, CPT1 and UCP2 was evaluated. Also, the oxidative phosphorylation of myocardial fibers was measured by high-resolution respirometry. Mice in the Western diet group (WG) presented altered biometric parameters compared to those in control group, including higher body weight, increased myocardial lipid deposition and glucose intolerance, which demonstrate the obesogenic role of Western diet. WG presented increased CPT1 and UCP2 contents and decreased IRS-1, plasma membrane GLUT4 and PGC-1α contents. In addition, WG presented cardiac mitochondrial dysfunction and reduced biogenesis, demonstrating a lower capacity of carbohydrates and fatty acid oxidation and also decreased coupling between oxidative phosphorylation and adenosine triphosphate synthesis. Cardiac metabolism impairment related to Western diet-induced obesity is probably due to damaged myocardial oxidative capacity, reduced mitochondrial biogenesis and mitochondria uncoupling, which compromise the bioenergetic metabolism of heart.
Biochimica Et Biophysica Acta - Molecular And Cell Biology Of Lipids, 2019
Involvement of pericardial adipose tissue in cardiac fibrosis of dietary-induced obese minipigs-Role of mitochondrial function, BBA-Molecular and Cell Biology of Lipids,
Journal of Molecular Medicine, 2010
The metabolic syndrome is a constellation of metabolic disorders including obesity, hypertension, and insulin resistance, components which are risk factors for the development of diabetes, hypertension, cardiovascular, and renal disease. Pathophysiological abnormalities that contribute to the development of the metabolic syndrome include impaired mitochondrial oxidative phosphorylation and mitochondrial biogenesis, dampened insulin metabolic signaling, endothelial dysfunction, and associated myocardial functional abnormalities. Recent evidence suggests that impaired myocardial mitochondrial biogenesis, fatty acid metabolism, and antioxidant defense mechanisms lead to diminished cardiac substrate flexibility, decreased cardiac energetic efficiency, and diastolic dysfunction. In addition, enhanced activation of the renin-angiotensinaldosterone system and associated increases in oxidative stress can lead to mitochondrial apoptosis and degradation, altered bioenergetics, and accumulation of lipids in the heart. In addition to impairments in metabolic signaling and oxidative stress, genetic and environmental factors, aging, and hyperglycemia all contribute to reduced mitochondrial biogenesis and mitochondrial dysfunction. These mitochondrial abnormalities can predispose a metabolic cardiomyopathy characterized by diastolic dysfunction. Mitochondrial dysfunction and resulting lipid accumulation in skeletal muscle, liver, and pancreas also impede insulin metabolic signaling and glucose
Diabetes, 2007
OBJECTIVE-In obesity and diabetes, myocardial fatty acid utilization and myocardial oxygen consumption (MVO 2) are increased, and cardiac efficiency is reduced. Mitochondrial uncoupling has been proposed to contribute to these metabolic abnormalities but has not been directly demonstrated. RESEARCH DESIGN AND METHODS-Oxygen consumption and cardiac function were determined in db/db hearts perfused with glucose or glucose and palmitate. Mitochondrial function was determined in saponin-permeabilized fibers and proton leak kinetics and H 2 O 2 generation determined in isolated mitochondria. RESULTS-db/db hearts exhibited reduced cardiac function and increased MVO 2. Mitochondrial reactive oxygen species (ROS) generation and lipid and protein peroxidation products were increased. Mitochondrial proliferation was increased in db/db hearts, oxidative phosphorylation capacity was impaired, but H 2 O 2 production was increased. Mitochondria from db/db mice exhibited fatty acid-induced mitochondrial uncoupling that is inhibitable by GDP, suggesting that these changes are mediated by uncoupling proteins (UCPs). Mitochondrial uncoupling was not associated with an increase in UCP content, but fatty acid oxidation genes and expression of electron transfer flavoproteins were increased, whereas the content of the F1 ␣-subunit of ATP synthase was reduced. CONCLUSIONS-These data demonstrate that mitochondrial uncoupling in the heart in obesity and diabetes is mediated by activation of UCPs independently of changes in expression levels. This likely occurs on the basis of increased delivery of reducing equivalents from -oxidation to the electron transport chain, which coupled with decreased oxidative phosphorylation capacity increases ROS production and lipid peroxidation.
Obesity, 2009
nature publishing group intervention and Prevention IntroductIon The complications of obesity are frequently associated with BMI, percentage of body fat, and changes in fat distribution (1,2). However, variables other than the traditional body composition and lipid profile may be further improving the discrimination of obesity effects, mainly on cardiac health. Energy and nutrient balances can be assessed by the combination of indirect calorimetry with dietary control. A major advantage of this approach is that changes in body nutrient stores and cardiac metabolic shifting can be detected well before they could be measured with available techniques for assessing risk factors for cardiac disease (3). Cardiac damage represents one of the main health problems associated with obesity-induced morbidity and mortality (1), but the mechanisms that are triggered for this obesity-related disease are not completely clear. Cardiac muscle utilizes a variety of substrate to produce energy and the heart can shift from one substrate to another depending on food intake (4). As the use of oxygen is vital for oxidative phosphorylation, representing a major intracellular source of reactive oxygen species (ROS), changes in diet compounds, or substrate for energy generation may result in higher ROS, thus inducing oxidative stress, an imbalance between oxidant and antioxidant systems in favor of the former (3,5). This concept may be regarded as a paradox because metabolic function is strictly dependent on oxygen delivery and use, and intact mitochondria are necessary for energy production. However, ROS generated in mitochondrial respiratory chain
Circulation, 2014
Obesity and diabetes mellitus are independently associated with the development of heart failure. In this study, we determined the respective effects of obesity, insulin resistance, and diabetes mellitus on the intrinsic contraction and mitochondrial function of the human myocardium before the onset of cardiomyopathy. Right atrial myocardium was obtained from 141 consecutive patients presenting no sign of cardiomyopathy. We investigated ex vivo isometric contraction, mitochondrial respiration and calcium retention capacity, and respiratory chain complex activities and oxidative stress status. Diabetes mellitus was associated with a pronounced impairment of intrinsic contraction, mitochondrial dysfunction, and increased myocardial oxidative stress, regardless of weight status. In contrast, obesity was associated with less pronounced contractile dysfunction without any significant perturbation of mitochondrial function or oxidative stress status. Tested as continuous variables, glycat...
Acta Physiologica
Obesity-induced insulin resistance and type 2 diabetes mellitus can ultimately result in various complications, including diabetic cardiomyopathy. In this case, cardiac dysfunction is characterized by metabolic disturbances such as impaired glucose oxidation and an increased reliance on fatty acid (FA) oxidation. Mitochondrial dysfunction has often been associated with the altered metabolic function in the diabetic heart, and may result from FA-induced lipotoxicity and uncoupling of oxidative phosphorylation. In this review, we address the metabolic changes in the diabetic heart, focusing on the loss of metabolic flexibility and cardiac mitochondrial function. We consider the alterations observed in mitochondrial substrate utilization, bioenergetics and dynamics, and highlight new areas of research which may improve our understanding of the cause and effect of cardiac mitochondrial dysfunction in diabetes. Finally, we explore how lifestyle (nutrition and exercise) and pharmacological interventions can prevent and treat metabolic and mitochondrial dysfunction in diabetes. K E Y W O R D S diabetes, heart, lipotoxicity, mitochondria This is an open access article under the terms of the Creat ive Commo ns Attri bution License, which permits use, distribution and reproduction in any medium, provided the original work is properly cited.
Loading Preview
Sorry, preview is currently unavailable. You can download the paper by clicking the button above.