Academia.eduAcademia.edu

Policy gradient learning for quadruped soccer robots

2010, Robotics and Autonomous Systems

Abstract

In real-world robotic applications, many factors, both at low-level (e.g., vision, motion control and behaviors) and at high-level (e.g., plans and strategies) determine the quality of the robot performance. Consequently, fine tuning of the parameters, in the implementation of the basic functionalities, as well as in the strategic decisions, is a key issue in robot software development. In recent years, machine learning techniques have been successfully used to find optimal parameters for typical robotic functionalities. However, one major drawback of learning techniques is time consumption: in practical applications, methods designed for physical robots must be effective with small amounts of data. In this paper, we present a method for concurrent learning of best strategy and optimal parameters using policy gradient reinforcement learning algorithm. The results of our experimental work in a simulated environment and on a real robot show a very high convergence rate.