Academia.edu no longer supports Internet Explorer.
To browse Academia.edu and the wider internet faster and more securely, please take a few seconds to upgrade your browser.
2003
A new method for visual tracking of articulated objects is presented. Analyzing articulated motion is challenging because the dimensionality increase potentially demands tremendous increase of computation. To ease this problem, we propose an approach that analyzes subparts locally while reinforcing the structural constraints at the mean time. The computational model of the proposed approach is based on a dynamic Markov network, a generative model which characterizes the dynamics and the image observations of each individual subpart as well as the motion constraints among different subparts. Probabilistic variational analysis of the model reveals a mean field approximation to the posterior densities of each subparts given visual evidence, and provides a computationally efficient way for such a difficult Bayesian inference problem. In addition, we design mean field Monte Carlo (MFMC) algorithms, in which a set of low dimensional particle filters interact with each other and solve the high dimensional problem collaboratively. Extensive experiments on tracking human body parts demonstrate the effectiveness, significance and computational efficiency of the proposed method.
The Fourth International Conference onComputer and Information Technology, 2004. CIT '04.
We present a novel method for tracking the motion of an articulated structure in a video sequence. The analysis of articulated motion is challenging because of the potentially large number of degrees of freedom (DOFs) of an articulated body. For particle filter based algorithms, the number of samples required with high dimensional problems can be computationally prohibitive. To alleviate this problem, we represent the articulated object as an undirected graphical model (or Markov Random Field, MRF) in which soft constraints between adjacent subparts are captured by conditional probability distributions. The graphical model is extended across time frames to implement a tracker. The tracking algorithm can be interpreted as a belief inference procedure on a dynamic Bayesian network. The discretisation of the state vectors makes it possible to utilise the efficient belief propagation (BP) and mean field (MF) algorithms to reason in this network. Experiments on real video sequences demonstrate that the proposed method is computationally efficient and performs well in tracking the human body.
In this paper, we describe a novel variational Monte Carlo approach for modeling and tracking body parts of articulated objects. An articulated object (human target) is represented as a dynamic Markov network of the different constituent parts. The proposed approach combines local information of individual body parts and other spatial constraints influenced by neighboring parts. The movement of the relative parts of the articulated body is modeled with local information of displacements from the Markov network and the global information from other neighboring parts. We explore the effect of certain model parameters (including the number of parts tracked; number of Monte-Carlo cycles, etc.) on system accuracy and show that ourvariational Monte Carlo approach achieves better efficiency and effectiveness compared to other methods on a number of real-time video datasets containing single targets.
Proceedings Eighth IEEE International Conference on Computer Vision. ICCV 2001, 2001
Particle filters are used for hidden state estimation with nonlinear dynamical systems. The inference of 3-d human motion is a natural application, given the nonlinear dynamics of the body and the nonlinear relation between states and image observations. However, the application of particle filters has been limited to cases where the number of state variables is relatively small, because the number of samples needed with high dimensional problems can be prohibitive. We describe a filter that uses hybrid Monte Carlo (HMC) to obtain samples in high dimensional spaces. It uses multiple Markov chains that use posterior gradients to rapidly explore the state space, yielding fair samples from the posterior. We find that the HMC filter is several thousand times faster than a conventional particle filter on a 28D people tracking problem.
2010 IEEE International Conference on Image Processing, 2010
ABSTRACT This paper introduces a new visual tracking technique combining particle filtering and Dynamic Bayesian Networks. The particle filter is utilized to robustly track an object in a video sequence and gain sets of descriptive object features. Dynamic Bayesian Networks use feature sequences to determine different motion patterns. A Graphical Model is introduced, which combines particle filter based tracking with Dynamic Bayesian Network-based classification. This unified framework allows for enhancing the tracking by adapting the dynamical model of the tracking process according to the classification results obtained from the Dynamic Bayesian Network. Therefore, the tracking step and classification step form a closed tracking-classification-tracking loop. In the first layer of the Graphical Model a particle filter is set up, whereas the second layer builds up the dynamical model of the particle filter based on the classification process of the Dynamic Bayesian Network.
2000
A probabilistic method for tracking 3D articulated human figures in monocular image sequences is presented. Within a Bayesian framework, we define a generative model of image appearance, a robust likelihood function based on image graylevel differences, and a prior probability distribution over pose and joint angles that models how humans move. The posterior probability distribution over model parameters is represented using a discrete set of samples and is propagated over time using particle filtering. The approach extends previous work on parameterized optical flow estimation to exploit a complex 3D articulated motion model. It also extends previous work on human motion tracking by including a perspective camera model, by modeling limb self occlusion, and by recovering 3D motion from a monocular sequence. The explicit posterior probability distribution represents ambiguities due to image matching, model singularities, and perspective projection. The method relies only on a frame-to-frame assumption of brightness constancy and hence is able to track people under changing viewpoints, in grayscale image sequences, and with complex unknown backgrounds.
In recent years Sequential Monte Carlo (SMC) algorithms have been applied to capture the motion of humans. In this paper we apply a SMC algorithm to capture the motion of an articulated chain, e.g., a human arm, and show how the SMC algorithm can be improved in this context by apply- ing auxiliary information. In parallel to a model-based ap- proach we detect skin color blobs in the image as our aux- iliary information and find the probabilities of each blob representing the hand. The probabilities of these blobs are used to control the drawing of particles in the SMC algo- rithm and to correct the predicted particles. The approach is tested against the standard SMC algorithm and we find that our approach improve the standard SMC algorithm.
2008
In this paper, we discard the first-order Markov state-space model commonly used in visual tracking and present a framework of visual tracking using high-order Monte Carlo Markov chain. By using graphic models to obtain the conditional independence properties, we derive the general expression of posterior density function for the mth-order hidden Markov model. We subsequently use Sequential Importance Sampling method to estimate the posterior density and obtain the high-order particle filtering algorithm for tracking. Experimental results show the superior performance of our proposed algorithm to traditional first-order particle filtering tracking algorithm, i.e. particle filtering derived based on first-order Markov chain.
Particle Filter -ArPF-, which has been specifically designed for an efficient sampling of hierarchical spaces, generated by articulated objects. Our approach decomposes the articulated motion into layers for efficiency purposes, making use of a careful modeling of the diffusion noise along with its propagation through the articulations. This produces an increase of accuracy and prevent for divergences. The algorithm is tested on hand tracking due to its complex hierarchical articulated nature. With this purpose, a new dataset generation tool for quantitative evaluation is also presented in this paper.
Tracking of the upper human body is one of the most interesting and challenging research fields in computer vision and comprises an important component used in gesture recognition applications. In this paper a probabilistic approach towards arm and hand tracking is presented. We propose the use of a kinematics model together with a segmentation of the parameter space to cope with the space dimensionality problem. Moreover, the combination of particle filters with hidden Markov models enables the simultaneous tracking of several hypotheses for the body orientation and the configuration of each of the arms.
2009 Workshop on Motion and Video Computing (WMVC), 2009
Efficient monocular human pose tracking in dynamic scenes is an important problem. Existing pose tracking methods either use activity priors to restrict the search space, or use generative body models with weak kinematic constraints to infer pose over multiple frames; these often tends to be slow. We develop an efficient algorithm to track human pose by estimating multi-frame body dynamics without activity priors. We present a monte-carlo approximation of the body dynamics using spatio-temporal distributions over part tracks. To obtain tracks that favor kinematically feasible body poses, we propose a novel "kinematically constrained" particle filtering approach which results in more accurate pose tracking than other stochastic approaches that use single frame priors. We demonstrate the effectiveness of our approach on videos with actors performing various actions in indoor dynamic scenes.
Series in Machine Perception and Artificial Intelligence, 2009
Visual tracking of articulated motion is a complex task with high computational costs. Because of the fact that articulated objects are usually represented as a set of linked limbs, tracking is performed with the support of a model. Model-based tracking allows determining object pose in an effortless way and handling occlusions. However, the use of articulated models generates a multidimensional state-space and, therefore, the tracking becomes computationally very expensive or even infeasible.
2007
Abstract In this paper, we present two new articulated motion analysis and object tracking approaches: the decentralized articulated object tracking method and the hierarchical articulated object tracking method. The first approach avoids the common practice of using a high-dimensional joint state representation for articulated object tracking. Instead, we introduce a decentralized scheme and model the interpart interaction within an innovative Bayesian framework.
IEEE Transactions on Image Processing, 2000
Particle filtering (PF) is now established as one of the most popular methods for visual tracking. Within this framework, two assumptions are generally made. The first is that the data are temporally independent given the sequence of object states, and the second one is the use of the transition prior as proposal distribution. In this paper, we argue that the first assumption does not strictly hold and that the second can be improved. We propose to handle both modeling issues using motion. Explicit motion measurements are used to drive the sampling process towards the new interesting regions of the image, while implicit motion measurements are introduced in the likelihood evaluation to model the data correlation term. The proposed model allows to handle abrupt motion changes and to filter out visual distractors when tracking objects with generic models based on shape representations. Experimental results compared against the CONDENSATION algorithm have demonstrated superior tracking performance.
Lecture Notes in Computer Science, 2007
We present a probabilistic framework for component-based automatic detection and tracking of objects in video. We represent objects as spatio-temporal two-layer graphical models, where each node corresponds to an object or component of an object at a given time, and the edges correspond to learned spatial and temporal constraints. Object detection and tracking is formulated as inference over a directed loopy graph, and is solved with non-parametric belief propagation. This type of object model allows object-detection to make use of temporal consistency (over an arbitrarily sized temporal window), and facilitates robust tracking of the object. The two layer structure of the graphical model allows inference over the entire object as well as individual components. AdaBoost detectors are used to define the likelihood and form proposal distributions for components. Proposal distributions provide 'bottomup' information that is incorporated into the inference process, enabling automatic object detection and tracking. We illustrate our method by detecting and tracking two classes of objects, vehicles and pedestrians, in video sequences collected using a single grayscale uncalibrated carmounted moving camera.
1999
The human figure exhibits complex and rich dynamic behavior that is both nonlinear and time-varying. However, most work on tracking and synthesizing figure motion has employed either simple, generic dynamic models or highly specific hand-tailored ones.
2012
Abstract A general framework for sequential particle filtering on graphs is presented in this paper. We present two new articulated motion analysis and object tracking approaches: the graph-based sequential particle filtering framework for articulated object tracking and its hierarchical counterpart. Specifically, we estimate the interaction density by an efficient decomposed inter-part interaction model.
2009
We study articulated human tracking by combining spatial and temporal priors in an integrated online learning and inference framework, where body parts can be localized and segmented simultaneously. The temporal prior is represented by the motion trajectory in a low dimensional latent space learned from tracking history, and it predicts the configuration of each body part for the next frame. The spatial prior is encoded by a star-structured graphical model and embedded in the temporal prior, and it can be constructed "on-the-fly" from the predicted pose and used to evaluate and correct the prediction by assembling part detection results. Both temporal and spatial priors can be online learned incrementally through the Back Constrained-Gaussian Process Latent Variable Model (BC-GPLVM) that involves a temporal sliding window for online learning. Experiments show that the proposed algorithm can achieve accurate and robust tracking results for different walking subjects with significant appearance and motion variability.
2008 19th International Conference on Pattern Recognition, 2008
This paper presents an approach to human motion tracking using multiple pre-trained activity models for propagation of particles in Annealed Particle Filtering. Hidden Markov models are trained on dimensionally reduced joint angle data to produce models of activity. Particles are divided between models for propagation by HMM synthesis, before converging on a solution during the annealing process. The approach facilitates multi-view tracking of unknown subjects performing multiple known activities with low particle numbers.
Image and Vision …, 2007
This paper presents visual cues for object tracking in video sequences using particle filtering. A consistent histogram-based framework is developed for the analysis of colour, edge and texture cues. The visual models for the cues are learnt from the first frame and the tracking can be carried out using one or more of the cues. A method for online estimation of the noise parameters of the visual models is presented along with a method for adaptively weighting the cues when multiple models are used. A particle filter (PF) is designed for object tracking based on multiple cues with adaptive parameters. Its performance is investigated and evaluated with synthetic and natural sequences and compared with the mean-shift tracker. We show that tracking with multiple weighted cues provides more reliable performance than single cue tracking. (P. Brasnett), mila. [email protected] (L. Mihaylova). www.elsevier.com/locate/imavis Image and Vision Computing xxx (2006) xxx-xxx ARTICLE IN PRESS Please cite this article as: Paul Brasnett et al., Sequential Monte Carlo tracking by fusing multiple cues .
2008
This paper presents a Markov Chain Monte Carlo (MCMC) based particle filter to track multiple persons dedicated to video surveillance applications. This hybrid tracker, devoted to networked intelligent cameras, takes benefit from the best properties of both MCMC and joint particle filter. A saliency map-based proposal distribution is shown to limit the well-known burst in terms of particles and MCMC iterations. Qualitative and quantitative results for real-world video data are presented.
Loading Preview
Sorry, preview is currently unavailable. You can download the paper by clicking the button above.