Academia.eduAcademia.edu

Causality Challenge An Energy-based Model for Feature Selection

2013

Abstract

Editor: Isabelle Guyon et al. In this paper we propose an energy-based model (EBM) for selecting subsets of features that are both causally and predictively relevant for classification tasks. The proposed method is tested in the causality challenge, a competition that promotes research on strengthen feature selection by taking into account causal information of features. Under the proposed approach, an energy value is assigned to every configuration of features and the problem is reduced to that of finding the configuration that minimizes an energy function. We propose an energy function that takes into account causal, predictive, and relevance/correlation information of features. Particularly, we introduce potentials that combine the rankings of individual feature selection methods, Markov blanket information and predictive performance estimations. The configuration with lower energy will be that offering the best tradeoff between these sources of information. Experimental results ...