Academia.eduAcademia.edu

ANALYSIS OF OBSERVED AND SIMULATED LIGHT CURVES OF SPACE DEBRIS

Abstract

Since 2004, the Astronomical Institute of the University of Bern (AIUB) has regularly observed light curves of fast-moving Earth-orbiting objects with the 1-meter telescope ZIMLAT, which is located near Bern, Switzerland. A light curve represents the brightness variations of an object over time. These variations result from the superposition of shape, attitude, motion, and material of an object under a specific viewing and illumination geometry. Whereas actively stabilized objects show relatively flat light curves due to stable attitude, light curves of space debris can show large variations even within very short time intervals. The time resolution of the light curves acquired with ZIMLAT is of the order of a few seconds, but even this high resolution does not prevent aliasing effects in some cases. Synthetic light curves have been generated. The simulation allows defining and independently changing object, illumination, and observation geometry parameters. This paper analyzes observed and simulated light curves with the aim to assess the feasibility of determining an object's characteristics, provided that the observation parameters (epoch, orbit/distance and geometry) are known.