Academia.edu no longer supports Internet Explorer.
To browse Academia.edu and the wider internet faster and more securely, please take a few seconds to upgrade your browser.
2018
The New Adaptive Optics Module for Interferometry (NAOMI) is ready to be installed at the 1.8-metre Auxiliary Telescopes (ATs) at ESO Paranal. NAOMI will make the existing interferometer performance less dependent on the seeing conditions. Fed with higher and more stable Strehl, the fringe tracker will achieve the fringe stability necessary to reach the full performance of the second-generation instruments GRAVITY and MATISSE. All four ATs will be equipped between September and November 2018 with a Deformable mirror (ALPAO DM-241), a 4*4 Shack– Hartmann adaptive optics system operating in the visible and an RTC based on SPARTA Light. During the last 6 months thorough system test has been made in laboratory to demonstrate the Adaptive Optics and chopping capability of NAOMI.
Astronomy & Astrophysics, 2019
Context. The tip-tilt stabilisation system of the 1.8 m Auxiliary Telescopes of the Very Large Telescope Interferometer was never dimensioned for robust fringe tracking, except when atmospheric seeing conditions are excellent. Aims. Increasing the level of wavefront correction at the telescopes is expected to improve the coupling into the single-mode fibres of the instruments, and enable robust fringe tracking even in degraded conditions. Methods. We deployed a new adaptive optics module for interferometry (NAOMI) on the Auxiliary Telescopes. Results. We present its design, performance, and effect on the observations that are carried out with the interferometric instruments.
Proceedings of SPIE, 2014
The New Adaptive Optics Module for Interferometry (NAOMI) 1 is the future low order adaptive optics system to be developed for and installed at the ESO 1.8 m Auxiliary Telescopes (ATs). The four ATs 2 are designed for interferometry which they are essentially dedicated for. Currently the AT's are equipped with a fast, visible tip-tilt sensor called STRAP 3 (System for Tip/tilt Removal with Avalanche Photodiodes), and the corrections are applied through a tip-tilt mirror. The goal is to equip all four ATs with a low-order Shack-Hartmann system operating in the visible for the VLTI dual feed light beams in place of the current tip-tilt correction. Because of the limited size of the ATs (1.8m diameter), a low-order system will be sufficient. The goal is to concentrate the energy into a coherent core and to make the encircled energy (into the single mode fibers) stable and less dependent on the atmospheric conditions in order to increase the sensitivity of the interferometric instruments. The system will use the ESO real time computer platform Sparta-light as the baseline. This paper presents the preliminary design concept and outlines the benefits to current and future VLTI instruments.
2006
The Adaptive Optics Facility is a project to convert UT4 into a specialised Adaptive Telescope. The present secondary mirror (M2) will be replaced by a new M2-Unit hosting a 1170-actuator deformable mirror. The three focal stations will be equipped with instruments adapted to the new capability of this UT. Two instruments have been identified for the two Nasmyth foci: Hawk-I with its AO module GRAAL allowing a Ground Layer Adaptive Optics correction and MUSE with GALACSI for GLAO correction and Laser Tomography Adaptive Optics correction. A future instrument still needs to be defined for the Cassegrain focus. Several guide stars are required for the type of adaptive corrections needed and a Four Laser Guide Star Facility (4LGSF) is being developed in the scope of the AO Facility. Convex mirrors like the VLT M2 represent a major challenge for testing and a substantial effort is dedicated to this. ASSIST, is a test bench that will allow testing of the Deformable Secondary Mirror and b...
2003
MACAO stands for Multi Application Curvature Adaptive Optics. A similar concept is applied to fulfill the need for wavefront correction for several VLT instruments. MACAO-VLTI is one of these built in 4 copies in order to equip the Coude focii of the ESO VLT's. The optical beams will then be corrected before interferometric recombination in the VLTI (Very Large Telescope Interferometer) laboratory. MACAO-VLTI uses a 60 elements bimorph mirror and curvature wavefront sensor. A custom made board processes the signals provided by the wavefront detectors, 60 Avalanche Photo-diodes, and transfer them to a commercial Power PC CPU board for Real Time Calculation. Mirrors Commands are sent to a High Voltage amplifier unit through an optical fiber link. The tip-tilt correction is done by a dedicated Tip-tilt mount holding the deformable mirror. The whole wavefront is located at the Coude focus. Software is developed in house and is ESO compatible. Expected performance is a Strehl ratio sligthly under 60% at 2.2 micron for bright reference sources (star V<10) and a limiting magnitude of 17.5 (Strehl ~0.1). The four systems will be installed in Paranal successively, the first one being planned
Adaptive Optical System Technologies II, 2003
MACAO stands for Multi Application Curvature Adaptive Optics. A similar concept is applied to fulfill the need for wavefront correction for several VLT instruments. MACAO-VLTI is one of these built in 4 copies in order to equip the Coude focii of the ESO VLT's. The optical beams will then be corrected before interferometric recombination in the VLTI (Very Large Telescope Interferometer) laboratory. MACAO-VLTI uses a 60 elements bimorph mirror and curvature wavefront sensor. A custom made board processes the signals provided by the wavefront detectors, 60 Avalanche Photo-diodes, and transfer them to a commercial Power PC CPU board for Real Time Calculation. Mirrors Commands are sent to a High Voltage amplifier unit through an optical fiber link. The tip-tilt correction is done by a dedicated Tip-tilt mount holding the deformable mirror. The whole wavefront is located at the Coude focus. Software is developed in house and is ESO compatible. Expected performance is a Strehl ratio sligthly under 60% at 2.2 micron for bright reference sources (star V<10) and a limiting magnitude of 17.5 (Strehl ~0.1). The four systems will be installed in Paranal successively, the first one being planned
The Messenger, 2019
The Messenger 177 – Quarter 3 | 2019 Frédéric Gonté1 Jose Antonio Abad1 Roberto Abuter1 Emmanuel Aller Carpentier1 Jaime Alonso1 Luigi Andofalto1 Pablo Barriga1 Jean-Philippe Berger2 Jean-Luc Beuzit2 Israel Blanchard1 Henri Bonnet1 Guillaume Bourdarot2 Pierre Bourget1 Roland Brast1 Paul Bristow1 Luis Caniguante1 Susana Cerda1 Claudia Cid1 Alex Correa1 Eric Cottalorda2 Benjamin Courtney-Barrer1 Pascaline Darré1 Bernard Delabre1 Alain Delboulbé2 Roderick Dembet1 Ronald Donaldson1 Reinhold Dorn1 Jorge Dupeyron1 Christophe Dupuy1 Sebastian Egner1 Frank Eisenhauer5 Lorena Faundez1 Enrico Fedrigo1 Gerhard Fischer1 Christoph Frank1 Eloy Fuenteseca1 Philippe Gitton1 Thibaut Guerlet1 Sylvain Guieu2 Pablo Gutierrez1 Pierre Haguenauer1 Andreas Haimerl1 Xavier Haubois1 Cédric Heritier1 Stefan Huber1 Norbert Hubin1 Paul Jolley1 Laurent Jocou2 Jean-Paul Kirchbauer1 Johann Kolb1 Johan Kosmalski1 Peter Krempl3 Carlos La Fuente1 Jean-Baptiste Le Bouquin2 Miska Le Louarn1 Paul Lilley1 Bruno Lopez6 Ma...
2018
The Very Large Telescope Interferometer Auxiliary Telescopes will soon be equipped with an adaptive optics system called NAOMI. The corrective optics deformable mirror is the commercial DM241 from ALPAO. Being part of an interferometer operating from visible to mid-infrared, the DMs of NAOMI face several challenges (high level of reliability, open-loop chopping, piston-free control, WFS/DM pupil rotation, high desired bandwidth and stroke). We here describe our extensive characterization of the DMs through measurements and simulations. We summarize the operational scenario we have defined to handle the specific mirror properties. We conclude that the ALPAO DMs have overall excellent properties that fulfill most of the stringent requirements and that deviations from specifications are easily handled. To our knowledge, NAOMI will be the first astronomical system with a command in true Zernike modes (allowing software rotation), and the first astronomical system in which a chopping is ...
Cornell University - arXiv, 2018
The Very Large Telescope Interferometer Auxiliary Telescopes will soon be equipped with an adaptive optics system called NAOMI. The corrective optics deformable mirror is the commercial DM241 from ALPAO. Being part of an interferometer operating from visible to mid-infrared, the DMs of NAOMI face several challenges (high level of reliability, open-loop chopping, piston-free control, WFS/DM pupil rotation, high desired bandwidth and stroke). We here describe our extensive characterization of the DMs through measurements and simulations. We summarize the operational scenario we have defined to handle the specific mirror properties. We conclude that the ALPAO DMs have overall excellent properties that fulfill most of the stringent requirements and that deviations from specifications are easily handled. To our knowledge, NAOMI will be the first astronomical system with a command in true Zernike modes (allowing software rotation), and the first astronomical system in which a chopping is performed with the deformable mirror (5" sky, at 5 Hz).
Proceedings of SPIE - The International Society for Optical Engineering, 2012
The ESO Adaptive Optics Facility (AOF) will transform UT4 of the VLT into a laser driven adaptive telescope in which the corrective optics, specifically the deformable secondary mirror, and the four Laser Guide Star units are integrated. Three instruments, with their own AO modules to provide field selection capabilities and wavefront sensing, will make use of this system to provide a variety of observing modes that span from large field IR imaging with GLAO, to integral field visible spectroscopy with both GLAO and LTAO, to SCAO high Strehl imaging and spectroscopy. Each of these observing modes carries its specific demands on observing conditions. Optimal use of telescope night-time, with such a high in demand and versatile instruments suite, is mandatory to maintain and even improve upon the scientific output of the facility. This implies that the standard VLT model for operations must be updated to cover these partly new demands. In particular, we discuss three key aspects: (1) the need for an upgrade of the site monitoring facilities to provide the operators with real-time information on the environmental conditions, including the ground layer strength, and their evolution throughout the night; (2) a set of tools and procedures to effectively use these data to optimize the short-term scheduling (i.e. with granularity of one night) of the telescope and (3) the upgrade of the current laser beam avoidance software to better cope with the AOF operational scheme, where the four laser units are continuously operated as long as the atmospheric conditions allow.
2003
Over the past two years ESO has reinforced its efforts in the field of Adaptive Optics. The AO team has currently the challenging objectives to provide 8 Adaptive Optics systems for the VLT in the coming years and has now a world-leading role in that field. This paper will review all AO projects and plans. We will present an overview of the Nasmyth Adaptive Optics System (NAOS) with its infrared imager CONICA installed successfully at the VLT last year. Sodium Laser Guide Star plans will be introduced. The status of the 4 curvature AO systems (MACAO) developed for the VLT interferometer will be discussed. The status of the SINFONI AO module developed to feed the infrared integral field spectrograph (SPIFFI) will be presented. A short description of the Multi-conjugate Adaptive optics Demonstrator MAD and its instrumentation will be introduced. Finally, we will present the plans for the VLT second-generation AO systems and the researches performed in the frame of OWL.
The Messenger, 2006
The Adaptive Optics Facility is a project to convert UT4 into a specialised Adap-tive Telescope with the help of a De-formable Secondary Mirror (see previ-ous article). The two instruments that have been identified for the two Nas-myth foci are: Hawk-I with its AO mod-ule ...
SPIE Proceedings, 2012
The ESO Adaptive Optics Facility (AOF) consists in an evolution of one of the ESO VLT unit telescopes to a laser driven adaptive telescope with a deformable mirror in its optical train. The project has completed the procurement phase and several large structures have been delivered to Garching (Germany) and are being integrated (the AO modules GRAAL and GALACSI and the ASSIST test bench). The 4LGSF Laser (TOPTICA) has undergone final design review and a pre-production unit has been built and successfully tested. The Deformable Secondary Mirror is fully integrated and system tests have started with the first science grade thin shell mirror delivered by SAGEM. The integrated modules will be tested in stand-alone mode in 2012 and upon delivery of the DSM in late 2012, the system test phase will start. A commissioning strategy has been developed and will be updated before delivery to Paranal. A substantial effort has been spent in 2011-2012 to prepare the unit telescope to receive the AOF by preparing the mechanical interfaces and upgrading the cooling and electrical network. This preparation will also simplify the final installation of the facility on the telescope. A lot of attention is given to the system calibration, how to record and correct any misalignment and control the whole facility. A plan is being developed to efficiently operate the AOF after commissioning. This includes monitoring a relevant set of atmospheric parameters for scheduling and a Laser Traffic control system to assist the operator during the night and help/support the observing block preparation.
Astronomical …, 2003
NAOMI (Nasmyth Adaptive Optics for Multi-purpose Instrumentation) is a recently completed and commissioned astronomical facility on the 4.2m William Herschel Telescope. The system is designed to work initially with Natural Guide Stars and also to be upgradeable for use with a single laser guide star. It has been designed to work with both near infrared and optical instrumentation (both imagers and spectrographs). The system uses a linearised segmented adaptive mirror and dual-CCD Shack-Hartmann wavefront sensor together with a multiple-DSP real-time processing system. Control system parameters can be updated on-the-fly by monitoring processes and the system can self-optimize its base optical figure to compensate for the optical characteristics of attached scientific instrumentation. The scientific motivation, consequent specification and implementation of NAOMI are described, together with example performance data and information on future upgrades and instrumentation.
2002
in press. [5] Paresce, F., et al. 2002a, in Interferometry for Optical Astronomy II, ed. Traub, W., Proc. SPIE 4838, in press. [6] Percheron, I., et al. 2002, in The VLTI: Challenges for the Future, eds. Garcia P. J. V., Glindemann A., Henning T., Malbet F., JENAM Workshop, in press. [7] Koehler, B., et al. 2002, The Messenger, this volume. [8] Kern, P., et al. 2002, in Interferometry for Optical Astronomy II, ed. Traub, W., Proc. SPIE 4838, in press. [9] Arsenault, R., et al. 2002, in Adaptive Optical System Technologies II, eds. Bonaccini, D., Wizinowich, P., Proc. SPIE 4839, in press. [10] Paresce, F., et al. 2002b, in Interferometry for Optical Astronomy II, ed. Traub, W., Proc. SPIE 4838, in press.
Proceedings of SPIE, 2016
We present an overview of the current and future adaptive optics systems at the LBTO along with the current and planned science instruments they feed. All the AO systems make use of the two 672 actuator adaptive secondary mirrors. They are (1) FLAO (NGS/SCAO) feeding the LUCI NIR imagers/spectrographs; (2) LBTI/AO (NGS/SCAO) feeding the NIR/MIR imagers and LBTI beam combiner; (3) the ARGOS LGS GLAO system feeding LUCIs; and (4) LINC-NIRVANA-an NGS/MCAO imager and interferometer system. AO performance of the current systems is presented along with proposed performances for the newer systems taking into account the future instrumentation.
SPIE Proceedings, 2010
Adaptive optics (AO) is essential for many elements of the science case for the Thirty Meter Telescope (TMT). The initial requirements for the observatory's facility AO system include diffraction-limited performance in the near IR, with 50 per cent sky coverage at the galactic pole. Point spread function uniformity and stability over a 30 arc sec field-ofview are also required for precision photometry and astrometry. These capabilities will be achieved via an order 60x60 multi-conjugate AO system (NFIRAOS) with two deformable mirrors, six laser guide star wavefront sensors, and three low-order, IR, natural guide star wavefront sensors within each client instrument. The associated laser guide star facility (LGSF) will employ 150W of laser power at a wavelength of 589 nm to generate the six laser guide stars. We provide an update on the progress in designing, modeling, and validating these systems and their components over the last two years. This includes work on the layouts and detailed designs of NFIRAOS and the LGSF; fabrication and test of a full-scale prototype tip/tilt stage (TTS); Conceptual Designs Studies for the real time controller (RTC) hardware and algorithms; fabrication and test of the detectors for the laser-and natural-guide star wavefront sensors; AO system modeling and performance optimization; lab tests of wavefront sensing algorithms for use with elongated laser guide stars; and high resolution LIDAR measurements of the mesospheric sodium layer. Further details may be found in specific papers on each of these topics.
Adaptive Optics Systems VI, 2018
NFIRAOS (Narrow-Field InfraRed Adaptive Optics System) will be the first-light multi-conjugate adaptive optics system for the Thirty Meter Telescope (TMT). NFIRAOS houses all of its opto-mechanical subsystems within an optics enclosure cooled to precisely-30˚C in order to improve sensitivity in the near-infrared. It supports up to three client science instruments, including the first-light InfraRed Imaging Spectrograph (IRIS). Powering NFIRAOS is a Real Time Controller that will process the signals from six laser wavefront sensors, one natural guide star pyramid WFS, up to three low-order on-instrument WFS and up to four guide windows on the client instrument's science detector in order to correct for atmospheric turbulence, windshake, optical errors and plate-scale distortion. NFIRAOS is currently preparing for its final design review in late June 2018 at NRC Herzberg in Victoria, British Columbia in partnership with Canadian industry and TMT.
Proceedings of SPIE - The International Society for Optical Engineering, 2012
GRAVITY is a second generation instrument for the VLT Interferometer, designed to enhance the near-infrared astrometric and spectro-imaging capabilities of VLTI. Combining beams from four telescopes, GRAVITY will provide an astrometric precision of order 10 micro-arcseconds, imaging resolution of 4 milli-arcseconds, and low and medium resolution spectro-interferometry, pushing its performance far beyond current infrared interferometric capabilities. To maximise the performance of GRAVITY, adaptive optics correction will be implemented at each of the VLT Unit Telescopes to correct for the effects of atmospheric turbulence. To achieve this, the GRAVITY project includes a development programme for four new wavefront sensors (WFS) and NIR-optimized real time control system. These devices will enable closed-loop adaptive correction at the four Unit Telescopes in the range 1.4-2.4 µm. This is crucially important for an efficient adaptive optics implementation in regions where optically bright references sources are scarce, such as the Galactic Centre. We present here the design of the GRAVITY wavefront sensors and give an overview of the expected adaptive optics performance under typical observing conditions. Benefiting from newly developed SELEX/ESO SAPHIRA electron avalanche photodiode (eAPD) detectors providing fast readout with low noise in the near-infrared, the AO systems are expected to achieve residual wavefront errors of ≤400 nm at an operating frequency of 500 Hz.
Adaptive Optics Systems VIII
MAVIS will be part of the next generation of VLT instrumentation and it will include a visible imager and a spectrograph, both fed by a common Adaptive Optics Module. The AOM consists in a MCAO system, whose challenge is to provide a 30" AO-corrected FoV in the visible domain, with good performance in a 50% sky coverage at the Galactic Pole. To reach the required performance, the current AOM scheme includes the use of up to 11 reference sources at the same time (8 LGSs + 3 NGSs) to drive more than 5000 actuators, divided into 3 deformable mirrors (one of them being UT4 secondary mirror). The system also includes some auxiliary loops, that are meant to compensate for internal instabilities (including WFSs focus signal, LGS tip-tilt signal and pupil position) so to push the stability of the main AO loop and the overall performance. Here we present the Preliminary Design of the AOM, which evolved, since the previous phase, as the result of further trade-offs and optimizations. We also introduce the main calibration strategy for the loops and subsystems , including NCPA calibration approach. Finally, we present a summary of the main results of the performance and stability analyses performed for the current design phase, in order to show compliance to the performance requirements.
Loading Preview
Sorry, preview is currently unavailable. You can download the paper by clicking the button above.