Academia.edu no longer supports Internet Explorer.
To browse Academia.edu and the wider internet faster and more securely, please take a few seconds to upgrade your browser.
2001, Neuroimage
Some authors proposed that exact mental calculation is based on linguistic representations and relies on the perisylvian language cortices, while the understanding of proximity relations between numerical quantities implicates the parietal cortex. However, other authors opposed developmental arguments to suggest that number sense emerges from nonspecific visuospatial processing areas in the parietal cortex. Within this debate, the present study aimed at revealing the functional anatomy of the two basic resolution strategies involved in mental calculation, namely arithmetical fact retrieval and actual computation, questioning in particular the respective role of language and/or visuospatial cerebral areas. Regional cerebral blood flow was measured with positron emission tomography while subjects were at rest (Rest), read digits (Read), retrieved simple arithmetic facts from memory (i.e., 2 ؋ 4, Retrieve), and performed mental complex calculation (i.e., 32 ؋ 24, Compute). Compared to Read, Retrieve engaged a left parietopremotor circuit representing a developmental trace of a finger-counting representation that mediates, by extension, the numerical knowledge in adult. Beside this basic network, Retrieve involved a naming network, including the left anterior insula and the right cerebellar cortex, while it did not engage the perisylvian language areas, which were deactivated as compared to Rest. In addition to this retrieval network, Compute specifically involved two functional networks: a left parieto-frontal network in charge of the holding of the multidigit numbers in visuospatial working memory and a bilateral inferior temporal gyri related to the visual mental imagery resolution strategy. Overall, these results provide strong evidence of the involvement of visuospatial representations in different levels of mental calculation.
Neuroimage, 2001
Some authors proposed that exact mental calculation is based on linguistic representations and relies on the perisylvian language cortices, while the understanding of proximity relations between numerical quantities implicates the parietal cortex. However, other authors opposed developmental arguments to suggest that number sense emerges from nonspecific visuospatial processing areas in the parietal cortex. Within this debate, the present study aimed at revealing the functional anatomy of the two basic resolution strategies involved in mental calculation, namely arithmetical fact retrieval and actual computation, questioning in particular the respective role of language and/or visuospatial cerebral areas. Regional cerebral blood flow was measured with positron emission tomography while subjects were at rest (Rest), read digits (Read), retrieved simple arithmetic facts from memory (i.e., 2 ؋ 4, Retrieve), and performed mental complex calculation (i.e., 32 ؋ 24, Compute). Compared to Read, Retrieve engaged a left parietopremotor circuit representing a developmental trace of a finger-counting representation that mediates, by extension, the numerical knowledge in adult. Beside this basic network, Retrieve involved a naming network, including the left anterior insula and the right cerebellar cortex, while it did not engage the perisylvian language areas, which were deactivated as compared to Rest. In addition to this retrieval network, Compute specifically involved two functional networks: a left parieto-frontal network in charge of the holding of the multidigit numbers in visuospatial working memory and a bilateral inferior temporal gyri related to the visual mental imagery resolution strategy. Overall, these results provide strong evidence of the involvement of visuospatial representations in different levels of mental calculation.
Cerebral Cortex, 2001
Mental calculation is a complex cognitive operation that is composed of a set of distinct functional processes. Using functional magnetic resonance imaging (fMRI), we mapped brain activity in healthy subjects performing arithmetical tasks and control tasks evoking a comparable load on visuo-constructive, linguistic, attentional and mnemonic functions. During calculation, as well as non-mathematical tasks, similar cortical networks consisting of bilateral prefrontal, premotor and parietal regions were activated, suggesting that most of these cortical areas do not exclusively represent modules for calculation but support more general cognitive operations that are instrumental but not specific to mental arithmetic. Significant differences between calculation and the non-mathematical tasks were found in parietal sub-regions, where non-arithmetic number or letter substitution tasks preferentially activated the superior parietal lobules whereas calculation predominantly elicited activation of the left dorsal angular gyrus and the medial parietal cortices. We interpret the latter activations to reflect sub-processes of mental calculation that are related to the processing of numerical representations during exact calculation and to arithmetical fact retrieval. Finally, we found that more complex calculation tasks involving the application of calculation rules increased activity in left inferior frontal areas that are known to subserve linguistic and working memory functions. Taken together, these findings help to embed the specific cognitive operation of calculation into a neural framework that provides the required set of instrumental components. This result may further inform the cognitive modeling of calculation and adds to the understanding of neuropsychological deficit patterns in patients.
Neuropsychologia, 2000
To explore brain areas involved in basic numerical computation, functional magnetic imaging (fMRI) scanning was performed on college students during performance of three tasks; simple arithmetic, numerical magnitude judgment, and a perceptualmotor control task. For the arithmetic relative to the other tasks, results for all eight subjects revealed bilateral activation in Brodmann's area 44, in dorsolateral prefrontal cortex (areas 9 and 10), in inferior and superior parietal areas, and in lingual and fusiform gyri. Activation was stronger on the left for all subjects, but only at Brodmann's area 44 and the parietal cortices. No activation was observed in the arithmetic task in several other areas previously implicated for arithmetic, including the angular and supramarginal gyri and the basal ganglia. In fact, angular and supramarginal gyri were signi®cantly deactivated by the veri®cation task relative to both the magnitude judgment and control tasks for every subject. Areas activated by the magnitude task relative to the control were more variable, but in ®ve subjects included bilateral inferior parietal cortex. These results con®rm some existing hypotheses regarding the neural basis of numerical processes, invite revision of others, and suggest productive lines for future investigation. Published by Elsevier Science Ltd.
Cortex, 1997
We describe two acalculic patients, one with a left subcortical lesion and the other with a right inferior parietal lesion and Gerstmann's syndrome. Both suffered from "pure anarithmetia": they could read arabic numerals and write them to dictation, but experienced a pronounced calculation deficit. On closer analysis, however, distinct deficits were found. The subcortical case suffered from a selective deficit of rote verbal knowledge, including but not limited to arithmetic tables, while her semantic knowledge of numerical quantities was intact. Conversely the inferior parietal case suffered from a category-specific impairment of quantitative numerical knowledge, particularly salient in subtraction and number bissection tasks, with preserved knowledge of rote arithmetic facts. This double dissociation suggests that numerical knowledge is processed in different formats within distinct cerebral pathways. We suggest that a left subcortical network contributes to the storage and retrieval of rote verbal arithmetic facts, while a bilateral inferior parietal network is dedicated to the mental manipulation of numerical quantities. 220 Stanislas Dehaene and Laurent Cohen
Neuropsychologia, 2005
Recent evidence suggests that areas in and around the intraparietal sulcus (IPS) represent magnitude in a stimulus-independent format. However, it has not been established whether the same is true for mental arithmetic or whether activation for higher level numerical processing diverges as a function of stimulus format. We addressed this question in a functional imaging study by presenting participants with simple addition problems using both symbolic (Arabic numerals) and non-symbolic (arrays of dots) stimuli. Conjunction analysis revealed common neural substrates for symbolic and non-symbolic addition in the anterior IPS bilaterally, left posterior IPS, medial frontal gyrus and left precentral gyrus. Right parietal and frontal cortex showed greater activation for non-symbolic addition. Our results demonstrate that mental arithmetic, studied using addition problems, is processed within the IPS independent of stimulus form. Additionally we examined whether exact and approximate addition conditions activated different neural substrates as a function of stimulus format. We did not find any differences between exact and approximate addition using symbolic and non-symbolic stimuli. This could be due to the inability of the participants to suppress exact calculation for single-digit addition problems. In contrast to recent findings, we found no significant activation for exact addition condition in left, language-related areas.
Nature Neuroscience, 2001
Calculating prodigies are individuals who are exceptional at quickly and accurately solving complex mental calculations. With positron emission tomography (PET), we investigated the neural bases of the cognitive abilities of an expert calculator and a group of non-experts, contrasting complex mental calculation to memory retrieval of arithmetic facts. We demonstrated that calculation expertise was not due to increased activity of processes that exist in non-experts; rather, the expert and the non-experts used different brain areas for calculation. We found that the expert could switch between short-term effort-requiring storage strategies and highly efficient episodic memory encoding and retrieval, a process that was sustained by right prefrontal and medial temporal areas.
Nuclear Medicine Communications, 2000
We examined cerebral activation patterns with positron emission tomography (PET) in 12 righthanded normal volunteers while they were completing simple calculation tasks or merely repeating numbers. Using a parametric experimental design, during calculation we found activation in the medial frontal/ cingulate gyri, left dorsolateral prefrontal cortex, left anterior insular cortex and right anterior insular cortex/putamen, left lateral parietal cortex, and the medial thalamus. Number repetition engaged bilateral inferior sensorimotor cortex, bilateral temporal areas, and left inferior frontal cortex. These results suggest a functional anatomical network for simple calculation, which includes aspects of attention, auditory, and motor processing and the phonological store and articulatory loop components of working memory; they add some support for a special role of the parietal cortex in calculation tasks.
Journal of experimental child psychology, 2009
Cortex, 2009
Number forms, conscious visuo-spatial representations of the sequence of numbers, are found in around 12% of the population. However, their contribution to numerical cognition is not well understood. In this study we contrast the speeded performance of individuals with number forms versus controls on single digit multiplication, subtraction and addition. Previous research has suggested that multiplication may rely more on retrieval of verbal facts whereas subtraction relies more on online calculation using a putatively spatial 'mental number line'. If people with number forms rely more heavily on visual-spatial strategies than verbal ones then we hypothesised that multiplication may be disproportionately affected by this strategy relative to subtraction, and this was found.
In humans, the ability to reason about mathematical quantities depends on a frontoparietal network that includes the intraparietal sulcus (IPS). How do nature and nurture give rise to the neurobiology of numerical cognition? We asked how visual experience shapes the neural basis of numerical thinking by studying numerical cognition in congenitally blind individuals. Blind (n = 17) and blindfolded sighted (n = 19) participants solved math equations that varied in difficulty (e.g., 27 − 12 = x vs. 7 − 2 = x), and performed a control sentence comprehension task while undergoing fMRI. Whole-cortex analyses revealed that in both blind and sighted participants, the IPS and dorsolateral prefrontal cortices were more active during the math task than the language task, and activity in the IPS increased parametrically with equation difficulty. Thus, the classic frontoparietal number network is preserved in the total absence of visual experience. However, surprisingly, blind but not sighted individuals additionally recruited a subset of early visual areas during symbolic math calculation. The functional profile of these "visual" regions was identical to that of the IPS in blind but not sighted individuals. Furthermore, in blindness, number-responsive visual cortices exhibited increased functional connectivity with prefrontal and IPS regions that process numbers. We conclude that the frontoparietal number network develops independently of visual experience. In blindness, this number network colonizes parts of deafferented visual cortex. These results suggest that human cortex is highly functionally flexible early in life, and point to frontoparietal input as a mechanism of cross-modal plasticity in blindness. plasticity | blindness | number | development | vision N umerical reasoning pervades modern human culture. We readily represent quantity, whether thinking about apples, hours, people, or ideas. It has been suggested that this competence is rooted in a primitive nonsymbolic system of numerical representation that is shared among adults of diverse cultures, as well as with preverbal infants and nonhuman animals (1, 2). This nonsymbolic system allows these populations to estimate numbers of visual or auditory items and to compute over these quantities. For example, infants and monkeys can detect which of two arrays contains more items, and can add and subtract approximate quantities (1-4). The nonverbal, nonsymbolic system underlying this performance represents number in an inherently approximate way (5). However, numerate humans also have the unique ability to reason about quantities precisely using an acquired system of number symbols .
Behavioral and Brain Functions, 2012
Background: The aim of the present functional magnetic resonance imaging (fMRI) study at 3 T was to investigate the influence of the verbal-visual cognitive style on cerebral activation patterns during mental arithmetic. In the domain of arithmetic, a visual style might for example mean to visualize numbers and (intermediate) results, and a verbal style might mean, that numbers and (intermediate) results are verbally repeated. In this study, we investigated, first, whether verbalizers show activations in areas for language processing, and whether visualizers show activations in areas for visual processing during mental arithmetic. Some researchers have proposed that the left and right intraparietal sulcus (IPS), and the left angular gyrus (AG), two areas involved in number processing, show some domain or modality specificity. That is, verbal for the left AG, and visual for the left and right IPS. We investigated, second, whether the activation in these areas implied in number processing depended on an individual's cognitive style.
2019
Where and under what conditions do spatial and numerical skills converge and diverge in the brain? To address this question, we conducted a meta-analysis of brain regions associated with basic symbolic number processing, arithmetic, and mental rotation. We used Activation Likelihood Estimation (ALE) to construct quantitative meta-analytic maps synthesizing results from 86 neuroimaging papers (~ 30 studies/cognitive process). All three cognitive processes were found to activate bilateral parietal regions in and around the intraparietal sulcus (IPS); a finding consistent with shared processing accounts. Numerical and arithmetic processing were associated with overlap in the left angular gyrus, whereas mental rotation and arithmetic both showed activity in the middle frontal gyri. These patterns suggest regions of cortex potentially more specialized for symbolic number representation and domain-general mental manipulation, respectively. Additionally, arithmetic was associated with uniq...
Current Biology, 2004
The parietal cortex is a central part of the brain's system for representing numbers and magnitudes. Activity in the parietal cortex might reflect number representation or actions made in response to the numbers.
Brain Stimulation, 2008
A dominant view in numerical cognition is that processing the quantity indicated by numbers (e.g. deciding the larger between two numbers such as '12.07' or '15.02') relies on the intraparietal regions (IPS) of the cerebral cortex. However, it remains unclear whether the IPS could play a more general role in numerical cognition, for example in (1) quantity processing even with non-numerical stimuli (e.g. choosing the larger of 'bikini' and 'coat'); and/or (2) conceptual tasks involving numbers beyond those requiring quantity processing (e.g. attributing a summer date to either '12.07' or '15.02').
Cerebral Cortex, 2012
The parietal cortex is central to numerical cognition. The right parietal region is primarily involved in basic quantity processing, while the left parietal region is additionally involved in precise number processing and numerical operations. Little is known about how the 2 regions interact during numerical cognition. We hypothesized that functional connectivity between the right and left parietal cortex is critical for numerical processing that engages both basic number representation and learned numerical operations. To test this hypothesis, we estimated neural activity using functional magnetic resonance imaging in participants performing numerical and arithmetic processing on dot arrays. We first found task-based functional connectivity between a right parietal seed and the left sensorimotor cortex in all task conditions. As we hypothesized, we found enhanced functional connectivity between this right parietal seed and both the left parietal cortex and neighboring right parietal cortex, particularly during subtraction. The degree of functional connectivity also correlated with behavioral performance across individual participants, while activity within each region did not. These results highlight the role of parietal functional connectivity in numerical processing. They suggest that arithmetic processing depends on crosstalk between and within the parietal cortex and that this crosstalk contributes to one's numerical competence.
Neuropsychologia, 2008
The manipulation of numbers required during calculation is known to rely on working memory (WM) resources. Here, we investigated the respective contributions of verbal and/or spatial WM manipulation brain networks during the addition of four numbers performed by adults, using functional magnetic resonance imaging (fMRI). Both manipulation and maintenance tasks were proposed with syllables, locations, or two-digit numbers. As compared to their maintenance, numbers manipulation (addition) elicited increased activation within a widespread cortical network including inferior temporal, parietal, and prefrontal regions. Our results demonstrate that mastery of arithmetic calculation requires the cooperation of three WM manipulation systems: an executive manipulation system conjointly recruited by the three manipulation tasks, including the anterior cingulate cortex (ACC), the orbital part of the inferior frontal gyrus, and the caudate nuclei; a left-lateralized, language-related, inferior fronto-temporal system elicited by numbers and syllables manipulation tasks required for retrieval, selection, and association of symbolic information; and a right superior and posterior fronto-parietal system elicited by numbers and locations manipulation tasks for spatial WM and attentional processes. Our results provide new information that the anterior intraparietal sulcus (IPS) is involved in tasks requiring a magnitude processing with symbolic (numbers) and nonsymbolic (locations) stimuli. Furthermore, the specificity of arithmetic processing is mediated by a left-hemispheric specialization of the anterior and posterior parts of the IPS as compared to a spatial task involving magnitude processing with nonsymbolic material.
NeuroImage, 2000
We examined cerebral activation patterns with positron emission tomography (PET) in 12 righthanded normal volunteers while they were completing simple calculation tasks or merely repeating numbers. Using a parametric experimental design, during calculation we found activation in the medial frontal/ cingulate gyri, left dorsolateral prefrontal cortex, left anterior insular cortex and right anterior insular cortex/putamen, left lateral parietal cortex, and the medial thalamus. Number repetition engaged bilateral inferior sensorimotor cortex, bilateral temporal areas, and left inferior frontal cortex. These results suggest a functional anatomical network for simple calculation, which includes aspects of attention, auditory, and motor processing and the phonological store and articulatory loop components of working memory; they add some support for a special role of the parietal cortex in calculation tasks.
Neuroimage, 2007
Functional neuroimaging studies have revealed that parietal brain circuits subserve arithmetic problem solving and that their recruitment dynamically changes as a function of training and development. The present study investigated whether the brain activation during mental calculation is also modulated by individual differences in mathematical competence. Twenty-five adult students were selected from a larger pool based on their performance on standardized tests of intelligence and arithmetic and divided into groups of individuals with relatively lower and higher mathematical competence. These groups did not differ in their non-numerical intelligence or age. In an fMRI block-design, participants had to verify the correctness of single-digit and multi-digit multiplication problems. Analyses revealed that the individuals with higher mathematical competence displayed stronger activation of the left angular gyrus while solving both types of arithmetic problems. Additional correlational analyses corroborated the association between individual differences in mathematical competence and angular gyrus activation, even when variability in task performance was controlled for. These findings demonstrate that the recruitment of the left angular gyrus during arithmetic problem solving underlies individual differences in mathematical ability and suggests a stronger reliance on automatic, language-mediated processes in more competent individuals.
Previous research has demonstrated that working memory plays an important role in arithmetic. Different arithmetical strategies rely on working memory to different extents-for example, verbal working memory has been found to be more important for procedural strategies, such as counting and decomposition, than for retrieval strategies. Surprisingly, given the close connection between spatial and mathematical skills, the role of visuospatial working memory has received less attention and is poorly understood. This study used a dual-task methodology to investigate the impact of a dynamic spatial n-back task (Experiment 1) and tasks loading the visuospatial sketchpad and central executive (Experiment 2) on adults' use of counting, decomposition, and direct retrieval strategies for addition. While Experiment 1 suggested that visuospatial working memory plays an important role in arithmetic, especially when counting, the results of Experiment 2 suggested this was primarily due to the domain-general executive demands of the n-back task. Taken together, these results suggest that maintaining visuospatial information in mind is required when adults solve addition arithmetic problems by any strategy but the role of domain-general executive resources is much greater than that of the visuospatial sketchpad.
Loading Preview
Sorry, preview is currently unavailable. You can download the paper by clicking the button above.