Academia.edu no longer supports Internet Explorer.
To browse Academia.edu and the wider internet faster and more securely, please take a few seconds to upgrade your browser.
2015, Physical review. E, Statistical, nonlinear, and soft matter physics
We propose an exactly solvable multisite interaction spin-1/2 Ising-Heisenberg model on a triangulated Husimi lattice for the rigorous studies of chaotic entanglement. By making use of the generalized star-triangle transformation, we map the initial model onto an effective Ising one on a Husimi lattice, which we solve then exactly by applying the recursive method. Expressing the entanglement of the Heisenberg spins, that we quantify by means of the concurrence, in terms of the magnetic quantities of the system, we demonstrate its bifurcation and chaotic behavior. Furthermore, we show that the underlying chaos may slightly enhance the amount of the entanglement and present on the phase diagram the transition lines from the uniform to periodic and from the periodic to chaotic regimes.
Acta Physica Polonica A, 2020
A bipartite entanglement between two nearest-neighbor Heisenberg spins of a spin-1/2 Ising-Heisenberg model on a triangulated Husimi lattice is quantified using a concurrence. It is shown that the concurrence equals zero in a classical ferromagnetic and a quantum disordered phase, while it becomes sizable though unsaturated in a quantum ferromagnetic phase. A thermally-assisted re-entrance of the concurrence is found above a classical ferromagnetic phase, whereas a quantum ferromagnetic phase displays a striking cusp of the concurrence at a critical temperature.
Physical Review E, 2015
The geometrically frustrated spin-1/2 Ising-Heisenberg model on triangulated Husimi lattices is exactly solved by combining the generalized star-triangle transformation with the method of exact recursion relations. The ground-state and finite-temperature phase diagrams are rigorously calculated along with both sublattice magnetizations of the Ising and Heisenberg spins. It is evidenced that the Ising-Heisenberg model on triangulated Husimi lattices with two or three interconnected triangles-in-triangles units displays in a highly frustrated region a quantum disorder irrespective of temperature, whereas the same model on triangulated Husimi lattices with a greater connectivity of triangles-in-triangles units exhibits at low enough temperatures an outstanding quantum order due to the order-by-disorder mechanism. The quantum reduction of both sublattice magnetizations in the peculiar quantum ordered state gradually diminishes with increasing the coordination number of underlying Husimi lattice.
Physical Review A, 2011
We consider the time evolution of entanglement in a finite two dimensional transverse Ising model. The model consists of a set of 7 localized spin-1 2 particles in a two dimensional triangular lattice coupled through nearest neighbor exchange interaction in presence of an external time dependent magnetic field. The magnetic field is applied in different function forms: step, exponential, hyperbolic and periodic. We found that the time evolution of the entanglement shows an ergodic behavior under the effect of the time dependent magnetic fields. Also we found that while the step magnetic field causes great disturbance to the system creating rabid oscillations, the system shows great controllability under the effect of the other magnetic fields where the entanglement profile follows closely the shape of the applied field even with the same frequency for periodic fields. This follow up trend breaks down as the strength of the field, the transition constant for exponential and hyperbolic, or frequency for periodic field increase leading to rapid oscillations. We observed that the entanglement is very sensitive to the initial value of the applied periodic field, the smaller the initial value the less distorted is the entanglement profile. Furthermore, the effect of thermal fluctuations is very devastating to the entanglement which decays very rapidly as the temperature increases. Interestingly, although large value of the magnetic field strength may yield small entanglement, it was found to be more persistent against thermal fluctuations than the small field strengths.
arXiv (Cornell University), 2010
Ground-state and finite-temperature phase diagrams of a geometrically frustrated spin-1/2 Ising-Heisenberg model on a triangle-hexagon lattice are investigated within the generalized star-triangle mapping transformation. It is shown that the ground state is constituted by two different spontaneously long-range ordered phases and one disordered spin-liquid phase.
Physical Review E, 2008
We investigate disordered one-and two-dimensional Heisenberg spin lattices across a transition from integrability to quantum chaos from both a statistical many-body and a quantum-information perspective. Special emphasis is devoted to quantitatively exploring the interplay between eigenvector statistics, delocalization, and entanglement in the presence of nontrivial symmetries. The implications of basis dependence of state delocalization indicators (such as the number of principal components) is addressed, and a measure of relative delocalization is proposed in order to robustly characterize the onset of chaos in the presence of disorder. Both standard multipartite and generalized entanglement are investigated in a wide parameter regime by using a family of spin-and fermion-purity measures, their dependence on delocalization and on energy spectrum statistics being examined. A distinctive correlation between entanglement, delocalization, and integrability is uncovered, which may be generic to systems described by the two-body random ensemble and may point to a new diagnostic tool for quantum chaos. Analytical estimates for typical entanglement of random pure states restricted to a proper subspace of the full Hilbert space are also established and compared with random matrix theory predictions.
Physical Review A, 2008
We consider the low energy spectrum of spin-1 2 two-dimensional triangular lattice models subject to a ferromagnetic Heisenberg interaction and a three spin chiral interaction of variable strength. Initially, we consider quasi-one dimensional ladder systems of various geometries. Analytical results are derived that yield the behavior of the ground states, their energies and the transition points. The entanglement properties of the ground state of these models are examined and we find that the entanglement depends on the lattice geometry due to frustration effects. To this end, the chirality of a given quantum state is used as a witness of tripartite entanglement. Finally, the two dimensional model is investigated numerically by means of exact diagonalization and indications are presented that the low energy sector is a chiral spin liquid.
Physical Review B, 2017
We investigate the effect of dimensional crossover in the ground state of the antiferromagnetic spin-1 Heisenberg model on the anisotropic triangular lattice that interpolates between the regime of weakly coupled Haldane chains (J J) and the isotropic triangular lattice (J = J). We use the density-matrix renormalization group (DMRG) and Schwinger boson theory performed at the Gaussian correction level above the saddle-point solution. Our DMRG results show an abrupt transition between decoupled spin chains and the spirally ordered regime at (J /J)c ∼ 0.42, signaled by the sudden closing of the spin gap. Coming from the magnetically ordered side, the computation of the spin stiffness within Schwinger boson theory predicts the instability of the spiral magnetic order toward a magnetically disordered phase with one-dimensional features at (J /J)c ∼ 0.43. The agreement of these complementary methods, along with the strong difference found between the intra-and the interchain DMRG short spin-spin correlations; for sufficiently large values of the interchain coupling, suggests that the interplay between the quantum fluctuations and the dimensional crossover effects gives rise to the one-dimensionalization phenomenon in this frustrated spin-1 Hamiltonian.
Proceedings of the National Academy of Sciences, 2007
Physica Scripta, 2019
Motivated by the ability of triangular spin ladders to implement quantum information processing, we propose a type of such systems whose Hamiltonian includes the XX Heisenberg interaction on the rungs and DzyaloshinskiiMoriya (DM) coupling over the legs. In this work, we discuss how tuning the magnetic interactions between elements of a nanomagnetic cell of a triangular ladder which contains four qubits influences on the dynamical behavior of entanglement shared between any pairs of the system. In this work, we make use of concurrence for monitoring entanglement. It is realized that the generation of quantum W states is an important feature of the present model when the system evolves unitarily with time. In general, coincidence with the emergence of W states, the concurrences of all pairs are equal to 2/N , where N is the number of system's qubits. We also obtain the precise relationship between the incidence of such states and the value of DM interaction as well as the time of entanglement transfer. Finally, by studying the two-point quantum correlations and expectation values of different spin variables, we find that xx and yy correlations bring the entanglement to a maximum value for W states, whereas for these states, zz correlation between any pairs completely quenches. Our results reveal that althoughŜ z tot does not commute with the system's Hamiltonian, its expectation value remains constant during time evolution which is a generic property of quantum W states.
Chaos: An Interdisciplinary Journal of Nonlinear Science, 2016
Using one-dimensional spin-1/2 systems as prototypes of quantum many-body systems, we study the emergence of quantum chaos. The main purpose of this work is to answer the following question: how does the spin-orbit interaction, as a pure quantum interaction, may lead to the onset of quantum chaos? We consider three integrable spin-1/2 systems: the Ising, the XX, and the XXZ limits, and analyze whether quantum chaos develops or not after the addition of the Dzyaloshinskii-Moriya interaction. We find that, depending on the strength of the anisotropy parameter, the answer is positive for the XXZ and Ising models, while no such evidence is observed for the XX model. We also discuss the relationship between quantum chaos and thermalization. The main purpose of this work is to answer this question: how the spin-orbit interaction as a pure quantum interaction may develop a quantum chaos which has no classical counterpart?. The result can be summarized as follows: 1-Ising chain with added Dzyaloshinskii-Moriya (DM) Interaction is chaotic. 2-XX chain with added DM interaction does not show a chaotic features. 3-XXZ chain with added DM interaction is chaotic.
Physical Review E, 2020
The spin-1/2 Ising-Heisenberg model on a triangulated Husimi lattice is exactly solved in a magnetic field within the framework of the generalized star-triangle transformation and the method of exact recursion relations. The generalized star-triangle transformation establishes an exact mapping correspondence with the effective spin-1/2 Ising model on a triangular Husimi lattice with a temperature-dependent field, pair and triplet interactions, which is subsequently rigorously treated by making use of exact recursion relations. The ground-state phase diagram of a spin-1/2 Ising-Heisenberg model on a triangulated Husimi lattice, which bears a close resemblance with a triangulated kagomé lattice, involves, in total, two classical and three quantum ground states manifested in respective low-temperature magnetization curves as intermediate plateaus at 1/9, 1/3, and 5/9 of the saturation magnetization. It is verified that the fractional magnetization plateaus of quantum nature have character of either dimerized or trimerized ground states. A low-temperature magnetization curve of the spin-1/2 Ising-Heisenberg model on a triangulated Husimi lattice resembling a triangulated kagome lattice may exhibit either no intermediate plateau, a single 1/3 plateau, a single 5/9 plateau, or a sequence of 1/9, 1/3, and 5/9 plateaus depending on a character and relative size of two considered coupling constants.
Scientific Reports
The ground state phase diagram of the dimerized spin-1/2 XX honeycomb model in presence of a transverse magnetic field (TF) is known. With the absence of the magnetic field, two quantum phases, namely, the Néel and the dimerized phases have been identified. Moreover, canted Néel and the paramagnetic (PM) phases also emerge by applying the magnetic field. In this paper, using two powerful numerical exact techniques, Lanczos exact diagonalization, and Density matrix renormalization group (DMRG) methods, we study this model by focusing on the quantum correlations, the concurrence, and the quantum discord (QD) among nearest-neighbor spins. We show that the quantum correlations can capture the position of the quantum critical points in the whole range of the ground state phase diagram consistent with previous results. Although the concurrence and the QD are short-range, informative about long-ranged critical correlations. In addition, we address a ”magnetic-entanglement” behavior that st...
Physical Review B, 2021
Physical Review A, 2007
We study a one-dimensional Ising model with a magnetic field and show that tilting the field induces a transition to quantum chaos. We explore the stationary states of this Hamiltonian to show the intimate connection between entanglement and avoided crossings. In general entanglement gets exchanged between the states undergoing an avoided crossing with an overall enhancement of multipartite entanglement at the closest point of approach, simultaneously accompanied by diminishing two-body entanglement as measured by concurrence. We find that both for stationary as well as nonstationary states, nonintegrability leads to a destruction of two-body correlations and distributes entanglement more globally.
Entropy
The ground state, magnetization scenario and the local bipartite quantum entanglement of a mixed spin-1/2 Ising–Heisenberg model in a magnetic field on planar lattices formed by identical corner-sharing bipyramidal plaquettes is examined by combining the exact analytical concept of generalized decoration-iteration mapping transformations with Monte Carlo simulations utilizing the Metropolis algorithm. The ground-state phase diagram of the model involves six different phases, namely, the standard ferrimagnetic phase, fully saturated phase, two unique quantum ferrimagnetic phases, and two macroscopically degenerate quantum ferrimagnetic phases with two chiral degrees of freedom of the Heisenberg triangular clusters. The diversity of ground-state spin arrangement is manifested themselves in seven different magnetization scenarios with one, two or three fractional plateaus whose values are determined by the number of corner-sharing plaquettes. The low-temperature values of the concurren...
International Journal of Theoretical Physics, 2017
In this paper, we investigate the thermal entanglement of two-spin subsystems in an ensemble of coupled spin-half and spin-one triangular cells, (1/2, 1/2, 1/2), (1/2, 1, 1/2), (1, 1/2, 1) and (1, 1, 1) with the XXZ anisotropic Heisenberg model subjected to an external homogeneous magnetic field. We adopt the generalized concurrence as the measure of entanglement which is a good indicator of the thermal entanglement and the critical points in the mixed higher dimensional spin systems. We observe that in the near vicinity of the absolute zero, the concurrence measure is symmetric with respect to zero magnetic field and changes abruptly from a non-null to null value for a critical magnetic field that can be signature of a quantum phase transition at finite temperature. The analysis of concurrence versus temperature shows that there exists a critical temperature, that depends on the type of the interaction, i.e. ferromagnetic or antiferromagnetic, the anisotropy parameter and the strength of the magnetic field. Results show that the pairwise thermal entanglement depends on the third spin which affects the maximum value of the concurrence at absolute zero and at quantum critical points.
Physical Review A, 2004
We study the dynamics of quantum correlations in a class of exactly solvable Ising-type models. We analyze in particular the time evolution of initial Bell states created in a fully polarized background and on the ground state. We find that the pairwise entanglement propagates with a velocity proportional to the reduced interaction for all the four Bell states. Singlet-like states are favored during the propagation, in the sense that triplet-like states change their character during the propagation under certain circumstances. Characteristic for the anisotropic models is the instantaneous creation of pairwise entanglement from a fully polarized state; furthermore, the propagation of pairwise entanglement is suppressed in favor of a creation of different types of entanglement. The "entanglement wave" evolving from a Bell state on the ground state turns out to be very localized in space-time. Further support to a recently formulated conjecture on entanglement sharing is given.
arXiv (Cornell University), 2022
The European Physical Journal B, 2012
Magnetoelastic properties of the spin-1/2 Ising-Heisenberg model on doubly decorated planar lattices partially amenable to lattice vibrations are examined within the framework of the harmonic approximation and decoration-iteration transformation. It is shown that the mutual interplay between quantum spin fluctuations and local fluctuations of lattice spacings enhances typical quantum features like the quantum reduction of the magnetization in the ground state of the quantum antiferromagnetic phase, while it does not affect the ground-state behaviour of the classical ferromagnetic phase by no means. It also turns out that local fluctuations of lattice spacings are responsible for a much more pronounced reduction of the critical temperature in the quantum antiferromagnetic phase than in the classical ferromagnetic phase. PACS. 05.50.+q Lattice theory and statistics -05.70.Jk Critical point phenomena -75.10.-b General theory and models of magnetic ordering -75.30.Kz Magnetic phase boundaries -75.40.Cx Static properties
Loading Preview
Sorry, preview is currently unavailable. You can download the paper by clicking the button above.