Academia.edu no longer supports Internet Explorer.
To browse Academia.edu and the wider internet faster and more securely, please take a few seconds to upgrade your browser.
…
9 pages
1 file
El área de la química que estudia la velocidad o rapidez con la que ocurre una reacción se denomina cinética química. La importancia de la cinética química abarca dos aspectos:
La rama de la biomecánica que estudia el movimiento y las causas que lo producen es la dinámica o cinética. El estudio de la dinámica y de la cinética está centrada en la fuerza, como la causa que produce los movimientos. El estudio de la dinámica es por tanto el estudio de las fuerzas que actúan sobre un cuerpo para producir movimiento. En algunas ocasiones, aunque sobre un cuerpo estén actuando varias fuerzas no se produce movimiento, en este caso, aparece la estática, como rama de la dinámica que estudia los cuerpos sometidos a fuerzas que están en equilibrio. CINETICA LINEAL Para el actual capítulo, sólo se estudiarán los movimientos causados por fuerzas que producen sobre el cuerpo una trayectoria rectilínea, de donde se deriva el nombre de cinética lineal. La fuerza es un concepto usado para describir la interacción entre un objeto y su medio ambiente. Puede ser definida como un agente que produce o tiende a producir un cambio en el estado de reposo o de movimiento de un objeto. Así por ejemplo, un balón de fútbol colocado sobre la grama permanecerá en ese sitio a menos que alguien le aplique una fuerza por medio de un puntapie y entonces el cambiará de posición y de velocidad. En otro caso, un ciclista que rueda por una pista a una velocidad de 30 Km/h tenderá a permanecer en esa velocidad, a menos que el ejerza una fuerza sobre los pedales para cambiar su velocidad. Desde el punto de vista físico, todas las fuerzas son ejercidas por interacciones y repulsiones de cargas nucleares. A este tipo de fuerzas se les denomina fuerzas sin contacto. Brancazio (1984) divide las fuerzas en dos grupos : fuerzas de contacto y fuerzas sin contacto. En el primer grupo se encuentran todas las fuerzas ejercidas por un objeto sobre otro, como en el caso de la fuerza del aire, la fuerza muscular, la fricción. En el segundo caso, está la fuerza de la gravedad, la fuerzas electrónicas, etc. La fuerza es un vector que tiene magnitud, dirección y sentido. Para determinar la fuerza resultante sobre un cuerpo se deben utilizar los procedimientos del álgebra vectorial. Para esto remitimos al lector al capítulo inicial donde mostramos ejemplos para tales casos. Newton (1642-1727) definió la relación entre fuerza y movimiento mediante tres leyes que son conocidas como las leyes del movimiento. Estas leyes son : la ley de la inercia (I Ley), la ley de la aceleración (II Ley) y la ley de la acción y reacción (III Ley).
El presente ensayo busca ante todo introducir el operador recurrente retro-rotatorio a nivel electro-débil, y resolver el enigma de la complementaridad por medio del propagador espiral de rotación-traslación a la manera como también lo hace la física twistorial de R. Penrose.
En cinemática lo que hacemos es ver cómo se mueve un cuerpo. Ese cuerpo puede ser un coche, un pájaro, una nube, una galaxia, lo que sea. Ver cómo se mueve un objeto significa para la física saber dónde está, qué velocidad tiene, y si esta velocidad cambia o es todo el tiempo la misma. Posición, velocidad y aceleración son tres conceptos que tenés que conocer bien porque se usan todo el tiempo y son la base de un montón de otras cosas que vienen después. Fijate bien: El lugar en donde está la cosa que se está moviendo se llama Posición. La rapidez que tiene lo que se está moviendo se llama velocidad. Si la velocidad del objeto aumenta o disminuye, se dice que tiene aceleración. Ejemplo: x X auto = 10 m Se usa la letra x para indicar la posición porque casi siempre las posiciones se marcan sobre un eje x. Si el objeto está a una determinada altura del piso se usa un eje vertical y (y la altura se indica con la letra y). EJEMPLO: Supongamos que tengo algo a 5 metros de altura. Para dar su posición tomo un eje vertical Y. Con respecto a este eje digo: LA POSICION DEL PATO ES Y = 5 metros. POSICION Y VELOCIDAD
(1 er Q.:prob impares, 2 do Q.:prob pares) 1. Una partícula se mueve sobre el eje x de modo que su velocidad es v = 2 + 3t 2 + 4t 3 (m/s). En el instante t = 0 su posicí on es x = 3 m. Determinar: a) Las unidades de las constantes 2, 3 y 4. b) La posicí on de la partícula en un instante genérico t. c) Su acelerací on. d) Su velocidad media en el intervalo de tiempo t 1 = 2 s y t 2 = 5 s. Solucí on: a) 2m/s; 3m/s 3 ; 4m/s 4 b) x = 3 + 2t + t 3 + t 4 c) a = 6t + 12t 2 d) 244m/s
M.R.U. (Movimiento rectilíneo uniforme) Repasamos conceptos: Desplazamiento: El desplazamiento efectuado por un móvil sobre la trayectoria es la diferencia entre su posición final y su posición inicial. velocidad media vectorial de un móvil: es el cociente entre su vector desplazamiento y el tiempo empleado por el móvil. Espacio recorrido: Es la distancia recorrida medida sobre la trayectoria. Si un móvil parte de una posición inicial y llega hasta una final sin cambiar de sentido, el espacio recorrido coincide con el valor absoluto del desplazamiento. Velocidad media escalar: es el cociente entre el espacio recorrido sobre la trayectoria y el tiempo empleado en ello.
Reservados todos los derechos. Ni todo el libro ni parte de él pueden ser reproducidos, archivados o transmitidos en forma alguna o mediante algún sistema electrónico, mec8nico de fotorreproducción, memoria o cualquier otro, sin permiso por escrito del editor.
CINEMATIA Y DINAMICA MOVIMIENTO DE LOS PLANETAS Durante muchos años, la gente creyó que La tierra era el centro del universo, que la tierra no se movía y que los planetas, el Sun, la Luna, y las estrellas se movían en esferas alrededor de la Tierra. Astrónomos tales como, Copérnico y Galileo sugirieron que un Sol era el centro del Sistema Solar, lo cual ofrecía una mejor manera de entender los movimientos de estos objetos en el cielo. Pero las personas no estaban listas para aceptar que la tierra no era el centro del universo. LEY DE GRAVITACION UNIVERSAL La ley de gravitación universal es una ley física clásica que describe la interacción gravitatoria entre distintos cuerpos con masa. Ésta fue presentada por Isaac Newton en su libro Philosophiae Naturalis Principia Mathematica, publicado en 1687, donde establece por primera vez una relación cuantitativa (deducida empíricamente de la observación) de la fuerza con que se atraen dos objetos con masa. Así, Newton dedujo que la fuerza con que se atraen dos cuerpos de diferente masa únicamente depende del valor de sus masas y del cuadrado de la distancia que los separa. LEY DEL UNIVERSO CUADRADO La ley de la inversa del cuadrado o ley cuadrática inversa se refiere a algunos fenómenos físicos cuya intensidad es inversamente proporcional a la distancia al centro donde se originan. En particular, se refiere a fenómenos ondulatorios (sonido y luz) y campos centrales.
Loading Preview
Sorry, preview is currently unavailable. You can download the paper by clicking the button above.