Academia.eduAcademia.edu

Certain Schur-Hadamard multipliers in the spaces $C\sb{p}$

1982, Proceedings of the American Mathematical Society

Abstract

Let f f be a continuously differentiable function on [ − 1 , 1 ] [ - 1,1] satisfying | f ′ ( t ) | ⩽ C | t | α \left | {f’(t)} \right | \leqslant C{\left | t \right |^\alpha } for some 0 > C 0 > C , α > ∞ \alpha > \infty and all − 1 ⩽ t ⩽ 1 - 1 \leqslant t \leqslant 1 , and let λ = ( λ i ) ∈ l r \lambda = ({\lambda _i}) \in {l_r} satisfy − 1 ⩽ λ i ⩽ 1 - 1 \leqslant {\lambda _i} \leqslant 1 for all i i . Then \[ a f , λ = ( f ( λ i ) − f ( λ j ) λ i − λ j ) {a_{f,\lambda }} = \left ( {\frac {{f({\lambda _i}) - f({\lambda _j})}} {{{\lambda _i} - {\lambda _j}}}} \right ) \] is a Schur-Hadamard multiplier from C p 1 {C_{{p_1}}} into C p 2 {C_{{p_2}}} for all p 1 {p_1} , p 2 {p_2} satisfying 1 ⩽ p 2 ⩽ 2 ⩽ p 1 ⩽ ∞ 1 \leqslant {p_2} \leqslant 2 \leqslant {p_1} \leqslant \infty and p 2 − 1 ⩽ p 1 − 1 + α / r p_2^{ - 1} \leqslant p_1^{ - 1} + \alpha /r .