Academia.eduAcademia.edu

Similarity join for low-and high-dimensional data

2003, Eighth International Conference on Database Systems for Advanced Applications, 2003. (DASFAA 2003). Proceedings.

Abstract

The efficient processing of similarity joins is important for a large class of applications. The dimensionality of the data for these applications ranges from low to high. Most existing methods have focussed on the execution of high-dimensional joins over large amounts of diskbased data. The increasing sizes of main memory available on current computers, and the need for efficient processing of spatial joins suggest that spatial joins for a large class of problems can be processed in main memory. In this paper we develop two new spatial join algorithms, the Grid-join and EGO*-join, and study their performance in comparison to the state of the art algorithm, EGO-join, and the RSJ algorithm. Through evaluation we explore the domain of applicability of each algorithm and provide recommendations for the choice of join algorithm depending upon the dimensionality of the data as well as the critical ε parameter. We also point out the significance of the choice of this parameter for ensuring that the selectivity achieved is reasonable. The proposed EGO*-join algorithm always, often significantly, outperforms the EGO-join. For low-dimensional data the Grid-join outperform both the EGO-and EGO*-joins. An analysis of the cost of the Grid-join is presented and highly accurate cost estimator functions are developed. These are used to choose an appropriate grid size for optimal performance and can also be used by a query optimizer to compute the estimated cost of the Grid-join.