Academia.edu no longer supports Internet Explorer.
To browse Academia.edu and the wider internet faster and more securely, please take a few seconds to upgrade your browser.
2019, Agriculture and Forestry
…
10 pages
1 file
Genetically modified organisms (GMOs) is a topic of intense debate across the globe since they are widely used in several commercial products and the GMO industry counts for billions of US dollars. Genetically modified crops can assist to mitigate problems in commercial agriculture with proven case studies in Indian cotton and Australian canola [1]. The success of the GMO industry has been impeded by negative information concerning health and environmental risks. The aim of the paper is to assess the current research (from 2010-2019) on the health risk of GMOs (with a special emphasis on genetically modified plants). EBSCOhost (including Medline) and ScienceDirect databases were used for review of the literature. The paper concludes that research on GMO health risk is still lacking in sound methodology, complexity, continuity, objectivity and remains inconclusive.
Food and chemical toxicology : an international journal published for the British Industrial Biological Research Association, 2017
Within the frame of the EU-funded MARLON project, background data were reviewed to explore the possibility of measuring health indicators during post-market monitoring for potential effects of feeds, particularly genetically modified (GM) feeds, on livestock animal health, if applicable. Four case studies (CSs) of potential health effects on livestock were framed and the current knowledge of a possible effect of GM feed was reviewed. Concerning allergenicity (CS-1), there are no case-reports of allergic reactions or immunotoxic effects resulting from GM feed consumption as compared with non-GM feed. The likelihood of horizontal gene transfer (HGT; CS-2) of GMO-related DNA to different species is not different from that for other DNA and is unlikely to raise health concerns. Concerning mycotoxins (CS-3), insect-resistant GM maize may reduce fumonisins contamination as a health benefit, yet other Fusarium toxins and aflatoxins show inconclusive results. For nutritionally altered crops...
African Journal of Biotechnology, 2011
EFSA's remit in the risk assessment of GMOs is very broad encompassing genetically modified plants, microorganisms and animals and assessing their safety for humans, animals and the environment. The legal frame for GMOs is set by Directive 2001/18/EC on their release into the environment, and Regulation (EC) No 1829/2003 on GM food and feed. The main focus of EFSA's GMO Panel and GMO Unit lies in the evaluation of the scientific risk assessment of new applications for market authorisation of GMOs, and in the development of corresponding guidelines for the applicants. The EFSA GMO Panel has elaborated comprehensive guidance documents on GM plants, GM microorganisms and GM animals, as well as on specific aspects of risk assessment such as the selection of comparators. EFSA also provides special scientific advice upon request of the European Commission; examples are post-market environmental monitoring of GMOs, and consideration of potential risks of new plant breeding techniques. The GMO Panel regularly reviews its guidance documents in the light of experience gained with the evaluation of applications, technological progress in breeding technologies and scientific developments in the diverse areas of risk assessment.
Ghana Medical Journal, 2014
Genetically modified (GM) crops are promoted on the basis of a range of far-reaching claims from the GM crop industry and its supporters. They say that GM crops: Are an extension of natural breeding and do not pose different risks from naturally bred crops Are safe to eat and can be more nutritious than naturally bred crops Are strictly regulated for safety Increase crop yields Reduce pesticide use Benefit farmers and make their lives easier Bring economic benefits Benefit the environment Can help solve problems caused by climate change Reduce energy use Will help feed the world. However, a large and growing body of scientific and other authoritative evidence shows that these claims are not true.
Trends in Food Science & Technology, 2008
All over the world, authorities responsible for the assessment and surveillance of foods and feeds derived using gene technology and the environmental impacts of genetically modified organisms (GMO) have chosen specific strategies to assess their safety. Although different regulatory frameworks are in place, almost all adopted risk assessment strategies are based on a common set of principles and guidelines. Here we provide some examples of these strategies and we compare them to highlight areas where an international consensus exists. Our hope is that even if limited, this short review can represent a first step towards the recognition of an international consensus and a broader dialog on GMOs regulation worldwide.
Environment International, 2011
Nutrition Reviews, 2009
The risk assessment of genetically modified (GM) crops for human nutrition and health has not been systematic. Evaluations for each GM crop or trait have been conducted using different feeding periods, animal models, and parameters. The most common result is that GM and conventional sources induce similar nutritional performance and growth in animals. However, adverse microscopic and molecular effects of some GM foods in different organs or tissues have been reported. Diversity among the methods and results of the risk assessments reflects the complexity of the subject. While there are currently no standardized methods to evaluate the safety of GM foods, attempts towards harmonization are on the way. More scientific effort is necessary in order to build confidence in the evaluation and acceptance of GM foods.
This document provides guidance for the environmental risk assessment (ERA) of genetically modified (GM) plants submitted within the framework of Regulation (EC) No. 1829/2003 on GM food and feed or under Directive 2001/18/EC on the deliberate release into the environment of genetically modified organisms (GMOs). This document provides guidance for assessing potential effects of GM plants on the environment and the rationales for the data requirements for a comprehensive ERA of GM plants. The ERA should be carried out on a case-by-case basis, following a step-by-step assessment approach. This document describes the six steps for the ERA of GM plants, as indicated in Directive 2001/18/EC, starting with (1) problem formulation including hazard identification; (2) hazard characterisation; (3) exposure characterisation; (4) risk characterisation; (5) risk management strategies; and (6) an overall risk evaluation. The scientific Panel on Genetically Modified Organisms (of the European Food Safety Authority (EFSA GMO Panel) considers seven specific areas of concern to be addressed by applicants and risk assessors during the ERA (1) persistence and invasiveness of the GM plant , or its compatible relatives, including plant-to-plant gene transfer ; (2) plant-to-microorganism gene transfer; (3) interaction of the GM plant with target organisms and (4) interaction of the GM plant with non-target organisms, including criteria for selection of appropriate species and relevant functional groups for risk assessment; (5) impact of the specific cultivation, management and harvesting techniques; including consideration of the production systems and the receiving environment(s); (6) effects on biogeochemical processes; and (7) effects on human and animal health. Each specific area of concern is considered in a structured and systematic way following the above-mentioned steps (1 to 6). In addition, the guidance document is supplemented with several general cross-cutting considerations (e.g. choice of comparator, receiving environment(s), general statistical principles, long-term effects) that need to be considered in the ERA.
The progress made in plant biotechnology has provided an opportunity to new food crops being developed having desirable traits for improving crop yield, reducing the use of agrochemicals and adding nutritional properties to staple crops. However, genetically modified (GM) crops have become a subject of intense debate in which opponents argue that GM crops represent a threat to individual freedom, the environment, public health and traditional economies. Despite the advances in food crop agriculture, the current world situation is still characterised by massive hunger and chronic malnutrition, representing a major public health problem. Biofortified GM crops have been considered an important and complementary strategy for delivering naturally-fortified staple foods to malnourished populations. Expert advice and public concern have led to designing strategies for assessing the potential risks involved in cultivating and consuming GM crops. The present critical review was aimed at expressing some conflicting points of view about the potential risks of GM crops for public health. It was concluded that GM food crops are no more risky than those genetically modified by conventional methods and that these GM crops might contribute towards reducing the amount of malnourished people around the world. However, all this needs to be complemented by effective political action aimed at increasing the income of people living below the poverty-line.
Loading Preview
Sorry, preview is currently unavailable. You can download the paper by clicking the button above.
Encyclopedia of Food and Agricultural Ethics, 2013
Science, Technology, & Human Values, 2015
Modern Management Review, 2014
Journal of Biotechnology, 2002
Environmental Biosafety Research, 2010
Conservation Ecology, 2000
Food and chemical toxicology : an international journal published for the British Industrial Biological Research Association, 2017
Journal of Toxicology and Environmental Health, Part B, 2003
Environmental Sciences Europe, 2015