Academia.edu no longer supports Internet Explorer.
To browse Academia.edu and the wider internet faster and more securely, please take a few seconds to upgrade your browser.
2017, Scientific reports
Tropical forests are global centres of biodiversity and carbon storage. Many tropical countries aspire to protect forest to fulfil biodiversity and climate mitigation policy targets, but the conservation strategies needed to achieve these two functions depend critically on the tropical forest tree diversity-carbon storage relationship. Assessing this relationship is challenging due to the scarcity of inventories where carbon stocks in aboveground biomass and species identifications have been simultaneously and robustly quantified. Here, we compile a unique pan-tropical dataset of 360 plots located in structurally intact old-growth closed-canopy forest, surveyed using standardised methods, allowing a multi-scale evaluation of diversity-carbon relationships in tropical forests. Diversity-carbon relationships among all plots at 1 ha scale across the tropics are absent, and within continents are either weak (Asia) or absent (Amazonia, Africa). A weak positive relationship is detectable ...
Global Ecology and Biogeography, 2014
Aim We examined (1) the relationships between aboveground tropical forest C storage, biodiversity and environmental drivers and (2) how these relationships inform theory concerning ecosystem function and biodiversity. Experiments have shown that there is a positive relationship between biodiversity and ecosystem functioning, but intense debate exists on the underlying mechanisms. While some argue that mechanisms such as niche complementarity increase ecosystem function, others argue that these relationships are a selection effect. Location Eleven tropical forests in the Americas, Africa and Asia. Methods We analysed the correlates of biodiversity and carbon storage in tropical forests using data from 59 1-ha tree plots from a standardized global tropical forest biodiversity-monitoring network. We examined taxonomic and functional diversity, aboveground C storage and environmental variables in order to determine the relationships between biodiversity and carbon storage in natural (non-plantation) tropical forests. Results We found that aboveground C storage in tropical forests increased with both taxonomic diversity and functional dominance, specifically the dominance of genera with large maximum diameters, after potential environmental drivers were accounted for (final model R 2 = 0.38, P < 0.001). Main conclusions Our results suggest that niche complementarity and the selection effect are not mutually exclusive: they both play a role in structuring tropical forests. While previous studies have documented relationships between diversity and C storage, these have largely been conducted on small scales in biomes that are relatively species poor compared with tropical forests (e.g. grasslands and temperate or boreal forests). Our results demonstrate that these positive biodiversityecosystem functioning relationships are also present in hyperdiverse systems on spatial scales relevant to conservation and management. This insight can be used to inform the conservation and management of tropical forests, which play a critical role in the global carbon cycle and are some of the biologically richest ecosystems on the planet.
Global Ecology and Biogeography, 2015
Aim Tropical forests store 25% of global carbon and harbour 96% of the world's tree species, but it is not clear whether this high biodiversity matters for carbon storage. Few studies have teased apart the relative importance of forest attributes and environmental drivers for ecosystem functioning, and no such study exists for the tropics.
2015
Aim Tropical forests store 25% of global carbon and harbour 96% of the world’s tree species, but it is not clear whether this high biodiversity matters for carbon storage. Few studies have teased apart the relative importance of forest attributes and environmental drivers for ecosystem functioning, and no such study exists for the tropics.
Scientific Reports
Tropical rainforests harbor exceptionally high biodiversity and store large amounts of carbon in vegetation biomass. However, regional variation in plant species richness and vegetation carbon stock can be substantial, and may be related to the heterogeneity of topoedaphic properties. Therefore, aboveground vegetation carbon storage typically differs between geographic forest regions in association with the locally dominant plant functional group. A better understanding of the underlying factors controlling tropical forest diversity and vegetation carbon storage could be critical for predicting tropical carbon sink strength in response to projected climate change. Based on regionally replicated 1-ha forest inventory plots established in a region of high geomorphological heterogeneity we investigated how climatic and edaphic factors affect tropical forest diversity and vegetation carbon storage. Plant species richness (of all living stems >10 cm in diameter) ranged from 69 to 127 ...
Biotropica, 2017
Impacts of climate change require that society urgently develops ways to reduce amounts of carbon in the atmosphere. Tropical forests present an important opportunity, as they take up and store large amounts of carbon. It is often suggested that forests with high biodiversity have large stocks and high rates of carbon uptake. Evidence is, however, scattered across geographic areas and scales, and it remains unclear whether biodiversity is just a co-benefit or also a requirement for the maintenance of carbon stocks and uptake. Here, we perform a quantitative review of empirical studies that analyzed the relationships between plant biodiversity attributes and carbon stocks and carbon uptake in tropical forests. Our results show that biodiversity attributes related to species, traits or structure significantly affect carbon stocks or uptake in 64% of the evaluated relationships. Average vegetation attributes (community-mean traits and structural attributes) are more important for carbon stocks, whereas variability in vegetation attributes (i.e., taxonomic diversity) is important for both carbon stocks and uptake. Thus, different attributes of biodiversity have complementary effects on carbon stocks and uptake. These biodiversity effects tend to be more often significant in mature forests at broad spatial scales than in disturbed forests at local spatial scales. Biodiversity effects are also more often significant when confounding variables are not included in the analyses, highlighting the importance of performing a comprehensive analysis that adequately accounts for environmental drivers. In summary, biodiversity is not only a co-benefit, but also a requirement for short-and long-term maintenance of carbon stocks and enhancement of uptake. Climate change policies should therefore include the maintenance of multiple attributes of biodiversity as an essential requirement to achieve long-term climate change mitigation goals.
2011
Developing countries are required to produce robust estimates of forest carbon stocks for successful implementation of climate change mitigation policies related to reducing emissions from deforestation and degradation (REDD). Here we present a "benchmark" map of biomass carbon stocks over 2.5 billion ha of forests on three continents, encompassing all tropical forests, for the early 2000s, which will be invaluable for REDD assessments at both project and national scales. We mapped the total carbon stock in live biomass (above-and belowground), using a combination of data from 4,079 in situ inventory plots and satellite light detection and ranging (Lidar) samples of forest structure to estimate carbon storage, plus optical and microwave imagery (1-km resolution) to extrapolate over the landscape. The total biomass carbon stock of forests in the study region is estimated to be 247 Gt C, with 193 Gt C stored aboveground and 54 Gt C stored belowground in roots. Forests in Latin America, sub-Saharan Africa, and Southeast Asia accounted for 49%, 25%, and 26% of the total stock, respectively. By analyzing the errors propagated through the estimation process, uncertainty at the pixel level (100 ha) ranged from ±6% to ±53%, but was constrained at the typical project (10,000 ha) and national (>1,000,000 ha) scales at ca. ±5% and ca. ±1%, respectively. The benchmark map illustrates regional patterns and provides methodologically comparable estimates of carbon stocks for 75 developing countries where previous assessments were either poor or incomplete.
Ecosystem Services, 2020
This paper sheds light on the state of our knowledge of relationships between plant diversity and tropical forests ecosystem services. We systematically reviewed the empirical evidence of relationships between three ecosystem services: carbon stock and sequestration, timber provisioning and non-timber forest product (NTFP) provisioning, and three dimensions of plant diversity: taxonomic, functional and structural. We carried out metaanalyses to assess their validity across spatial scales and plot sizes. We found that indicators of all three dimensions of plant diversity have reported relationships with at least two of the studied ecosystem services, but there has been limited and inconsistent use of plant diversity indicators and little attention for relationships with timber and NTFP services. Nevertheless, we found that tree species richness showed robust significant positive correlations with carbon stock across the tropics, and that the geographical extent of the study area had a significant negative effect on the strength of this relationship, where the strength of the relationship decreased with increasing geographical extent. This paper reveals a knowledge gap for services other than carbon stock and shows that at local to regional spatial scales, synergies can be achieved between policies focused on biodiversity conservation and maintenance of carbon stocks.
Science advances, 2018
Protecting aboveground carbon stocks in tropical forests is essential for mitigating global climate change and is assumed to simultaneously conserve biodiversity. Although the relationship between tree diversity and carbon stocks is generally positive, the relationship remains unclear for consumers or decomposers. We assessed this relationship for multiple trophic levels across the tree of life (10 organismal groups, 3 kingdoms) in lowland rainforests of the Congo Basin. Comparisons across regrowth and old-growth forests evinced the expected positive relationship for trees, but not for other organismal groups. Moreover, differences in species composition between forests increased with difference in carbon stock. These variable associations across the tree of life contradict the implicit assumption that maximum co-benefits to biodiversity are associated with conservation of forests with the highest carbon storage. Initiatives targeting climate change mitigation and biodiversity conse...
Loading Preview
Sorry, preview is currently unavailable. You can download the paper by clicking the button above.