Academia.edu no longer supports Internet Explorer.
To browse Academia.edu and the wider internet faster and more securely, please take a few seconds to upgrade your browser.
2012, 48th AIAA/ASME/SAE/ASEE Joint Propulsion Conference & Exhibit
NASA is developing a new docking system to support future space exploration missions to low Earth orbit, the Moon, and other destinations. A key component of this system is the seal at the main docking interface which inhibits the loss of cabin air once docking is complete. Depending on the mission, the seal must be able to dock in either a seal-on-flange or seal-on-seal configuration. Seal-on-flange mating would occur when a docking system equipped with a seal docks to a system with a flat metal flange. This would occur when a vehicle docks to a node on the International Space Station. Seal-on-seal mating would occur when two docking systems equipped with seals dock to each other. Two types of seal designs were identified for this application: Gask-O-seals and multi-piece seals. Both types of seals had a pair of seal bulbs to satisfy the redundancy requirement. A series of performance assessments and comparisons were made between the candidate seal designs indicating that they meet the requirements for leak rate and compression and adhesion loads under a range of operating conditions. Other design factors such as part count, integration into the docking system tunnel, seal-on-seal mating, and cost were also considered leading to the selection of the multi-piece seal design for the new docking system. The results of this study can be used by designers of future docking systems and other habitable volumes to select the seal design best-suited for their particular application. Nomenclature AO atomic oxygen CBM Common Berthing Mechanism GRC Glenn Research Center ISS International Space Station kip one thousand lb f LEO low Earth orbit SOF seal-on-flange SOS seal-on-seal 16. SECURITY CLASSIFICATION OF: 17. LIMITATION OF ABSTRACT UU 18. NUMBER OF PAGES 26 19a. NAME OF RESPONSIBLE PERSON
44th AIAA/ASME/SAE/ASEE Joint Propulsion Conference & Exhibit, 2008
A universal docking system is being developed by the National Aeronautics and Space Administration (NASA) to support future space exploration missions to low Earth orbit (LEO), to the moon, and to Mars. The candidate docking seals for the system are a composite design consisting of elastomer seal bulbs molded into the front and rear sides of a metal ring. The test specimens were sub-scale seals with two different elastomer cross-sections and a 12-in. outside diameter. The seal assemblies were mated in elastomer seal-on-metal plate and elastomer seal-onelastomer seal configurations. The seals were manufactured from S0383-70 silicone elastomer compound. Nominal and off-nominal joint configurations were examined. Both the compression load required to mate the seals and the leak rate observed were recorded while the assemblies were subjected to representative docking system operating temperatures of-58, 73, and 122 °F (-50, 23, and 50 °C). Both the loads required to fully compress the seals and their leak rates were directly proportional to the test temperature. Nomenclature AO atomic oxygen CVCM collected volatile condensable materials LEO low Earth orbit LIDS Low Impact Docking System MMOD micrometeoroid and orbital debris NASA National Aeronautics and Space Administration RTD resistance temperature detector TML total mass loss UV ultraviolet radiation REPORT DOCUMENTATION PAGE Form Approved OMB No. 0704-0188 The public reporting burden for this collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources, gathering and maintaining the data needed, and completing and reviewing the collection of information. Send comments regarding this burden estimate or any other aspect of this collection of information, including suggestions for reducing this burden, to Department of Defense, Washington Headquarters Services, Directorate for Information Operations and Reports (0704-0188),
43rd AIAA/ASME/SAE/ASEE Joint Propulsion Conference & Exhibit, 2007
Available electronically at http://gltrs.grc.nasa.gov Trade names and trademarks are used in this report for identification only. Their usage does not constitute an official endorsement, either expressed or implied, by the National Aeronautics and Space Administration. Level of Review: This material has been technically reviewed by technical management.
43rd AIAA/ASME/SAE/ASEE Joint Propulsion Conference & Exhibit, 2007
A universal docking and berthing system is being developed by the National Aeronautics and Space Administration (NASA) to support all future space exploration missions to low-Earth orbit (LEO), to the Moon, and to Mars. The Low Impact Docking System (LIDS) is being designed to operate using a seal-on-seal configuration in numerous space environments, each having unique exposures to temperature, solar radiation, reactive elements, debris, and mission duration. As the LIDS seal is likely to be manufactured from an elastomeric material, performance evaluation of elastomers after exposure to atomic oxygen (AO) and ultraviolet radiation (UV) was conducted, of which the work presented herein was a part. Each of the three candidate silicone elastomer compounds investigated, including Esterline ELA-SA-401, and Parker Hannifin S0383-70 and S0899-50, was characterized as a low outgassing compound, per ASTM E595, having percent total mass loss (TML) less than 1.0% and collected volatile condensable materials (CVCM) less than 0.1%. Each compound was compatible with the LIDS operating environment of -50 to 50°C. The seal characteristics presented include compression set, elastomer-to-elastomer adhesion, and o-ring leakage rate. The ELA-SA-401 compound had the lowest variation in compression set with temperature. The S0383-70 compound exhibited the lowest compression set after exposure to AO and UV. The adhesion for all of the compounds was significantly reduced after exposure to AO and was further decreased after exposure to AO and UV. The leakage rates of o-ring specimens showed modest increases after exposure to AO. The leakage rates after exposure to AO and UV were increased by factors of up to 600 when compared to specimens in the as-received condition. 2 Nomenclature AO = atomic oxygen APAS = Androgynous Peripheral Assembly System CBM = Common Berthing Mechanism CEV = Crew Exploration Vehicle CVCM = collected volatile condensable materials ESH = equivalent sun hours ISS = International Space Station LEO = low-Earth orbit LIDS = Low Impact Docking System LVDT = linear variable displacement transformer NASA = National Aeronautics and Space Administration NUV = near ultraviolet radiation RTD = resistance temperature detector TML = total mass loss UV = ultraviolet radiation VUV = vacuum ultraviolet radiation
1998
SEE ATTACHED 12b. DISTRIBUTION CODE 14. SUBJECT TERMS fV.rLtW Battle 'boottivu. 17. SECURITY CLASSIFICATION OF REPORT UNCLASSIFIED
46th AIAA/ASME/SAE/ASEE Joint Propulsion Conference & Exhibit, 2010
NASA is developing advanced space-rated vacuum seals in support of future space exploration missions to low-Earth orbit and other destinations. These seals may be 50 to 60 in. (127 to 152 cm) in diameter and must exhibit extremely low leak rates to ensure that astronauts have sufficient breathable air for extended missions to the International Space Station or the Moon. Seal compression loads must be below prescribed limits so as not to overload the mechanisms that compress them during docking or mating, and seal adhesion forces must be low to allow two mated systems to separate when required. NASA Glenn Research Center has developed a new test apparatus to measure leak rates and compression and adhesion loads of candidate full-scale seals under simulated thermal, vacuum, and engagement conditions. Tests can be performed in seal-on-seal or seal-on-flange configurations at temperatures from-76 to 140 °F (-60 to 60 °C) under operational pressure gradients. Nominal and off-nominal mating conditions (e.g., incomplete seal compression) can also be simulated. This paper describes the main design features of the test apparatus as well as techniques used to overcome some of the design challenges. Nomenclature gpm gallons per minute
44th AIAA/ASME/SAE/ASEE Joint Propulsion Conference & Exhibit, 2008
42nd AIAA/ASME/SAE/ASEE Joint Propulsion Conference & Exhibit, 2006
The National Aeronautics and Space Administration is currently designing the Crew Exploration Vehicle (CEV) as a replacement for the Space Shuttle for manned missions to the International Space Station, as a command module for returning astronauts to the moon, and as an earth reentry vehicle for the final leg of manned missions to the moon and Mars. The CEV resembles a scaled-up version of the heritage Apollo vehicle; however, the CEV seal requirements are different than those from Apollo because of its different mission requirements. A review is presented of some of the seals used on the Apollo spacecraft for the gap between the heat shield and backshell and for penetrations through the heat shield, docking hatches, windows, and the capsule pressure hull.
AIAA SPACE 2007 Conference & Exposition, 2007
Since its founding, NASA has been dedicated to the advancement of aeronautics and space science. The NASA Scientific and Technical Information (STI) program plays a key part in helping NASA maintain this important role. The NASA STI Program operates under the auspices of the Agency Chief Information Officer. It collects, organizes, provides for archiving, and disseminates NASA's STI. The NASA STI program provides access to the NASA Aeronautics and Space Database and its public interface, the NASA Technical Reports Server, thus providing one of the largest collections of aeronautical and space science STI in the world. Results are published in both non-NASA channels and by NASA in the NASA STI Report Series, which includes the following report types:
IOP Conference Series: Earth and Environmental Science, 2016
The paper deals with strength characteristics of several sealer devices used to seal the inner cavity of an oil pipeline during the replacement of a pipeline section. Construction calculations revealed the stresses related to the pressurized rubber-cord sealing element rupture resulted from an emergency situation. It was concluded that it is necessary to test the operating parameters before applying the sealers. Estimation of the safety factor of existing sealer devices designs was conducted and recommendations for its increase were proposed.
1990
i'rografl t iement N, ProjtNo la,- r, wvt & ufl ' Accession
This Standard will be revised when the Society approves the issuance of a new edition. ASME issues written replies to inquiries concerning interpretations of technical aspects of this Standard. Periodically certain actions of the ASME PCC Committee may be published as Cases. Cases and interpretations are published on the ASME website under the Committee Pages at http://cstools.asme.org/ as they are issued. Errata to codes and standards may be posted on the ASME website under the Committee Pages to provide corrections to incorrectly published items, or to correct typographical or grammatical errors in codes and standards. Such errata shall be used on the date posted. The Committee Pages can be found at http://cstools.asme.org/. There is an option available to automatically receive an e-mail notification when errata are posted to a particular code or standard. This option can be found on the appropriate Committee Page after selecting "Errata" in the "Publication Information" section. ASME is the registered trademark of The American Society of Mechanical Engineers. This code or standard was developed under procedures accredited as meeting the criteria for American National Standards. The Standards Committee that approved the code or standard was balanced to assure that individuals from competent and concerned interests have had an opportunity to participate. The proposed code or standard was made available for public review and comment that provides an opportunity for additional public input from industry, academia, regulatory agencies, and the public-at-large. ASME does not "approve," "rate," or "endorse" any item, construction, proprietary device, or activity. ASME does not take any position with respect to the validity of any patent rights asserted in connection with any items mentioned in this document, and does not undertake to insure anyone utilizing a standard against liability for infringement of any applicable letters patent, nor assume any such liability. Users of a code or standard are expressly advised that determination of the validity of any such patent rights, and the risk of infringement of such rights, is entirely their own responsibility. Participation by federal agency representative(s) or person(s) affiliated with industry is not to be interpreted as government or industry endorsement of this code or standard. ASME accepts responsibility for only those interpretations of this document issued in accordance with the established ASME procedures and policies, which precludes the issuance of interpretations by individuals. No part of this document may be reproduced in any form, in an electronic retrieval system or otherwise, without the prior written permission of the publisher.
1989
When Government drawings, specifications, or other data are used for any purpose other than in connection with a definitely Government-related procurement, the United States Government incurs no responsibility or any obligation whatsoever. The fact that the Government may have formulated or in any way supplied the said drawings, specifications, or other data, is not to be regarded by implication, or otherwise in any manner construed, as licensing the holder, or any other person or corporation; or as conveying any rights or permission to manufacture, use, or sell any patented invention that may in any way be related th6reto.
Programme and Invitation to the workshop: Seals and Sealing, A Survey of Materials, Forms and Functions
Spacecraft docking seals are typically made of silicone elastomers. When such seals are exposed to low Earth orbit (LEO) conditions, they can suffer damage from ultraviolet (UV) radiation and atomic oxygen (AO, or monoatomic oxygen, the predominant oxygen species in LEO). An experiment flew on the International Space Station to measure the effects of LEO on seal materials S0383-70 and ELA-SA-401 and various mating counterface materials which included anodized aluminum. Samples flown in different orientations received different amounts of UV and AO. The hypotheses were that most of the damage would be from UV, and 10 days or more of exposure in LEO would badly damage the seals. Eighteen seals were exposed for 543 days in ram (windward), zenith (away from Earth), or wake (leeward) orientations, and 15 control samples (not flown) provided undamaged baseline leakage. To determine post-flight leak rates, each of the 33 seals were placed in an O-ring groove of a leak test fixture and pres...
Loading Preview
Sorry, preview is currently unavailable. You can download the paper by clicking the button above.