Academia.edu no longer supports Internet Explorer.
To browse Academia.edu and the wider internet faster and more securely, please take a few seconds to upgrade your browser.
2021, Bulletin of the AAS
…
8 pages
1 file
AI-generated Abstract
A Next Generation Lunar Orbiter (NGLO) mission is proposed to enhance our understanding of the Moon and advance lunar science. By deploying a sophisticated suite of instruments, NGLO aims to address critical scientific questions outlined in the Planetary Decadal Survey, focusing on lunar geology, the origins of terrestrial planets, and the lunar volatile cycle. The mission promises to provide unprecedented data essential for future exploration endeavors, including human presence on the Moon.
Astronomy and Geophysics, 2006
Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences, 2014
The lunar geological record contains a rich archive of the history of the inner Solar System, including information relevant to understanding the origin and evolution of the Earth–Moon system, the geological evolution of rocky planets, and our local cosmic environment. This paper provides a brief review of lunar exploration to-date and describes how future exploration initiatives will further advance our understanding of the origin and evolution of the Moon, the Earth–Moon system and of the Solar System more generally. It is concluded that further advances will require the placing of new scientific instruments on, and the return of additional samples from, the lunar surface. Some of these scientific objectives can be achieved robotically, for example by in situ geochemical and geophysical measurements and through carefully targeted sample return missions. However, in the longer term, we argue that lunar science would greatly benefit from renewed human operations on the surface of th...
Planetary and Space Science, 2012
The lunar geological record has much to tell us about the earliest history of the Solar System, the origin and evolution of the Earth-Moon system, the geological evolution of rocky planets, and the near-Earth cosmic environment throughout Solar System history. In addition, the lunar surface offers outstanding opportunities for research in astronomy, astrobiology, fundamental physics, life sciences and human physiology and medicine. This paper provides an interdisciplinary review of outstanding lunar science objectives in all of these different areas. It is concluded that addressing them satisfactorily will require an end to the 40-year hiatus of lunar surface exploration, and the placing of new scientific instruments on, and the return of additional samples from, the surface of the Moon. Some of these objectives can be achieved robotically (e.g. through targeted sample return, the deployment of geophysical networks, and the placing of antennas on the lunar surface to form radio telescopes). However, in the longer term, most of these scientific objectives would benefit significantly from renewed human operations on the lunar surface. For these reasons it is highly desirable that current plans for renewed robotic surface exploration of the Moon are developed in the context of a future human lunar exploration programme, such as that proposed by the recently formulated Global Exploration Roadmap.
Chemie der Erde - Geochemistry, 2009
With the cancellation of the Apollo program after Apollo 17 returned from the Moon in 1972, the focus of NASA switched to other areas of the Solar System. Study of the Moon did continue through analysis of the returned samples and remotely sensed data sets (both orbital and surface), as well as through Earth-based telescopic studies. In the 1990s, new orbital data were obtained from several missions (fly-by and orbital), the first being Galileo that allowed the lunar farside to be mapped, followed by global mapping by the Clementine and Lunar Prospector missions. Interest in the Moon started to increase at the beginning of the 21st century as other nations focused their space exploration programs on the Moon. The speech by President Bush in January 2004 put the Moon back into the critical exploration path for NASA, paving the way for humans to return to the lunar surface by 2020. This return will be critical for developing technologies and protocols for the eventual human exploration of other parts of the solar system. At the time of writing (June 2008), the SELENE/Kaguya mission (Japan and Chang'e-1 (China) are orbiting the Moon, with Chandrayaan-1 (India) and Lunar Reconnaissance Orbiter (USA) being scheduled to launch later in 2008. The past (and present) exploration of the Moon begs the question ''what's left to be done?'' With the renewed focus on the Moon, now that it is on the pathway for the exploration of Mars (and beyond) a similar question has been raised-what should the astronauts do on the Moon? The publication of the New Views of the Moon book [Jolliff et al., 2006. New Views of the Moon, Reviews in Mineralogy, vol. 60. American Mineralogical Society, 721pp] highlighted a number of important scientific questions that remain unanswered as well as posing many more on the basis of the currently available data. These questions resonated in three Lunar Exploration Analysis Group (LEAG) reports pertinent to this discussion, which were also published (on line) during 2006 (http://www.lpi.usra.edu/leag), and in the National Research Council of the National Academies [2007. The Scientific Context for Exploration of the Moon. National Academies Press, Washington, DC, 112pp] report entitled ''The Scientific Context for Exploration of the Moon''. This paper synthesizes these recent studies, along with those from the 1980s and 1990s, to emphasize the lunar science questions that remain unanswered. In addition, it summarizes the missions already flown to the Moon along with those that are planned in order to give the reader an idea of exactly what lunar science has been and will be conducted in the hope that it will inspire proposals for missions to address the outstanding science questions.
Bulletin of the AAS, 2021
Space Policy, 2004
It is over thirty years since the last human being stood on the lunar surface, and I will argue that this long hiatus in human exploration has been to the detriment of lunar and planetary science. The primary scientific importance of the Moon lies in the record it preserves of the early evolution of a terrestrial planet, and of the near-Earth cosmic environment in the first billion years or so of Solar System history. This record may not be preserved anywhere else, and I will argue that gaining proper access to it will require a human presence. Moreover, while this will primarily be a task for the geosciences, I will argue that the astronomical and biological sciences would also benefit from a renewed human presence on the Moon, and especially from the establishment of a permanently occupied scientific outpost.
2022 IEEE Aerospace Conference (AERO)
Selected in 2019 as a NASA SIMPLEx mission, Lunar Trailblazer is in implementation for flight system delivery at the end of 2022. The mission's goal is to understand the form, abundance, and distribution of water on the Moon and the lunar water cycle. Lunar Trailblazer also collects data of candidate landing sites to inform planning for future human and robotic exploration of the Moon and evaluate the potential for in situ resource utilization. Lunar Trailblazer's two science instruments, the High-resolution Volatiles and Minerals Moon Mapper (HVM 3) and the Lunar Thermal Mapper (LTM) provide simultaneous high-resolution spectral imaging data to map OH/water, crustal composition, and thermophysical properties from a 100±30 km lunar polar orbit. The ~210-kg flight system deploys from an ESPA Grande and utilizes a ~1000 m/s ΔV hydrazine chemical propulsion system, similar to that employed by GRAIL. Trailblazing elements include the novel state-of-the-art dataset collected at substantially reduced price point, fully geographically co-registered data products delivered to the Planetary Data System, planetary mission team demographics, Caltech campus mission operations, and student staffing of select mission ops roles. Lunar Trailblazer's pioneering development is providing key lessons learned for future planetary small spacecraft.
2008
The Lunar Atmosphere and Dust Environment Explorer (LADEE) is a Lunar science orbiter mission currently under development to address the goals of the National Research Council decadal surveys and the recent "Scientific Context for Exploration of the Moon" (SCEM) [1] report to study the pristine state of the lunar atmosphere and dust environment prior to significant human activities. 12 LADEE will determine the composition of the lunar atmosphere and investigate the processes that control its distribution and variability, including sources, sinks, and surface interactions. LADEE will also determine whether dust is present in the lunar exosphere, and reveal the processes that contribute to its sources and variability. These investigations are relevant to our understanding of surface boundary exospheres and dust processes throughout the solar system, address questions regarding the origin and evolution of lunar volatiles, and have potential implications for future exploration activities. The LADEE science instruments include a neutral mass spectrometer, ultraviolet spectrometer, and dust sensor. LADEE will also fly a laser communications system technology demonstration that could provide a building block for future space communications architectures. LADEE is an important component in NASA's portfolio of near-term lunar missions, addressing objectives that are currently not covered by other U.S. or international efforts, and whose observations must be conducted before large-scale human or robotic activities irrevocably perturb the tenuous and fragile lunar atmosphere. LADEE will also demonstrate the effectiveness of a low-cost, rapid-development program utilizing a modular bus design launched on the new Minotaur V launch vehicle. Once proven, this capability could enable future lunar missions in a highly cost constrained environment. This paper describes the LADEE objectives, mission design, and technical approach.
Loading Preview
Sorry, preview is currently unavailable. You can download the paper by clicking the button above.
Space Science Reviews, 2010
Advances in Space Research, 2008
Bulletin of the AAS, 2021
Planetary and Space Science, 2012
1 st Space …, 2005
Space Science Reviews, 2010
Bulletin of the AAS, 2021
Eos, Transactions American Geophysical Union, 2000
1st Space Exploration Conference: Continuing the Voyage of Discovery, 2005
AIAA Proceedings.[np]. …, 2009
Journal of Geophysical Research: Planets, 2012
2007 3rd International Conference on Recent Advances in Space Technologies, 2007
Acta Astronautica, 2010
Experimental Astronomy, 2011
Advances in Space Research, 1994
International Journal of Astrobiology, 2006
Lunar Bases and …, 1992
Advances in Space Research, 2008