Academia.edu no longer supports Internet Explorer.
To browse Academia.edu and the wider internet faster and more securely, please take a few seconds to upgrade your browser.
2021, 2021 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS)
…
15 pages
1 file
A promising characteristic of Deep Reinforcement Learning (DRL) is its capability to learn optimal policy in an end-to-end manner without relying on feature engineering. However, most approaches assume a fully observable state space, i.e. fully observable Markov Decision Processes (MDPs). In real-world robotics, this assumption is unpractical, because of issues such as sensor sensitivity limitations and sensor noise, and the lack of knowledge about whether the observation design is complete or not. These scenarios lead to Partially Observable MDPs (POMDPs). In this paper, we propose Long-Short-Term-Memory-based Twin Delayed Deep Deterministic Policy Gradient (LSTM-TD3) by introducing a memory component to TD3, and compare its performance with other DRL algorithms in both MDPs and POMDPs. Our results demonstrate the significant advantages of the memory component in addressing POMDPs, including the ability to handle missing and noisy observation data.
Machine Learning and Knowledge Extraction
The first part of a two-part series of papers provides a survey on recent advances in Deep Reinforcement Learning (DRL) applications for solving partially observable Markov decision processes (POMDP) problems. Reinforcement Learning (RL) is an approach to simulate the human’s natural learning process, whose key is to let the agent learn by interacting with the stochastic environment. The fact that the agent has limited access to the information of the environment enables AI to be applied efficiently in most fields that require self-learning. Although efficient algorithms are being widely used, it seems essential to have an organized investigation—we can make good comparisons and choose the best structures or algorithms when applying DRL in various applications. In this overview, we introduce Markov Decision Processes (MDP) problems and Reinforcement Learning and applications of DRL for solving POMDP problems in games, robotics, and natural language processing. A follow-up paper will...
2007
This paper presents Recurrent Policy Gradients, a model-free reinforcement learning (RL) method creating limited-memory sto-chastic policies for partially observable Markov decision problems (POMDPs) that require long-term memories of past observations. The approach involves approximating a policy gradient for a Recurrent Neural Network (RNN) by backpropagating return-weighted characteristic eligibilities through time. Using a “Long Short-Term Memory” architecture, we are able to outperform other RL methods on two important benchmark tasks. Furthermore, we show promising results on a complex car driving simulation task.
IEEE Access
Most real-world problems are essentially partially observable, and the environmental model is unknown. Therefore, there is a significant need for reinforcement learning approaches to solve them, where the agent perceives the state of the environment partially and noisily. Guided reinforcement learning methods solve this issue by providing additional state knowledge to reinforcement learning algorithms during the learning process, allowing them to solve a partially observable Markov decision process (POMDP) more effectively. However, these guided approaches are relatively rare in the literature, and most existing approaches are model-based, meaning that they require learning an appropriate model of the environment first. In this paper, we propose a novel model-free approach that combines the soft actor-critic method and supervised learning concept to solve real-world problems, formulating them as POMDPs. In experiments performed on OpenAI Gym, an open-source simulation platform, our guided soft actor-critic approach outperformed other baseline algorithms, gaining 7∼20% more maximum average return on five partially observable tasks constructed based on continuous control problems and simulated in MuJoCo.
IEEE Access
In recent years, reinforcement learning (RL) has achieved remarkable success due to the growing adoption of deep learning techniques and the rapid growth of computing power. Nevertheless, it is well-known that flat reinforcement learning algorithms are often have trouble learning and are even data-efficient with respect to tasks having hierarchical structures, e.g., those consisting of multiple subtasks. Hierarchical reinforcement learning is a principled approach that can tackle such challenging tasks. On the other hand, many real-world tasks usually have only partial observability in which state measurements are often imperfect and partially observable. The problems of RL in such settings can be formulated as a partially observable Markov decision process (POMDP). In this paper, we study hierarchical RL in a POMDP in which the tasks have only partial observability and possess hierarchical properties. We propose a hierarchical deep reinforcement learning approach for learning in hierarchical POMDP. The deep hierarchical RL algorithm is proposed for domains to both MDP and POMDP learning. We evaluate the proposed algorithm using various challenging hierarchical POMDPs. INDEX TERMS Hierarchical deep reinforcement learning, partially observable MDP (POMDP), semi-MDP, partially observable semi-MDP (POSMDP).
Journal of Algorithms, 2009
Reinforcement learning for partially observable Markov decision problems (POMDPs) is a challenge as it requires policies with an internal state. Traditional approaches suffer significantly from this shortcoming and usually make strong assumptions on the problem domain such as perfect system models, state-estimators and a Markovian hidden system. Recurrent neural networks (RNNs) offer a natural framework for dealing with policy learning using hidden state and require only few limiting assumptions. As they can be trained well using gradient descent, they are suited for policy gradient approaches.
2020 7th NAFOSTED Conference on Information and Computer Science (NICS), 2020
This study develops a robot mobility policy based on deep reinforcement learning. Since traditional methods of conventional robotic navigation depend on accurate map reproduction as well as require high-end sensors, learning-based methods are positive trends, especially deep reinforcement learning. The problem is modeled in the form of a Markov Decision Process (MDP) with the agent being a mobile robot. Its state of view is obtained by the input sensors such as laser findings or cameras and the purpose is navigating to the goal without any collision. There have been many deep learning methods that solve this problem. However, in order to bring robots to market, low-cost mass production is also an issue that needs to be addressed. Therefore, this work attempts to construct a pseudo laser findings system based on direct depth matrix prediction from a single camera image while still retaining stable performances. Experiment results show that they are directly comparable with others using high-priced sensors.
Proceedings of the AAAI Conference on Artificial Intelligence, 2019
Recent advances in applying deep learning to planning have shown that Deep Reactive Policies (DRPs) can be powerful for fast decision-making in complex environments. However, an important limitation of current DRP-based approaches is either the need of optimal planners to be used as ground truth in a supervised learning setting or the sample complexity of high-variance policy gradient estimators, which are particularly troublesome in continuous state-action domains. In order to overcome those limitations, we introduce a framework for training DRPs in continuous stochastic spaces via gradient-based policy search. The general approach is to explicitly encode a parametric policy as a deep neural network, and to formulate the probabilistic planning problem as an optimization task in a stochastic computation graph by exploiting the re-parameterization of the transition probability densities; the optimization is then solved by leveraging gradient descent algorithms that are able to handle...
ArXiv, 2017
Partially observable environments present an important open challenge in the domain of sequential control learning with delayed rewards. Despite numerous attempts during the two last decades, the majority of reinforcement learning algorithms and associated approximate models, applied to this context, still assume Markovian state transitions. In this paper, we explore the use of a recently proposed attention-based model, the Gated End-to-End Memory Network, for sequential control. We call the resulting model the Gated End-to-End Memory Policy Network. More precisely, we use a model-free value-based algorithm to learn policies for partially observed domains using this memory-enhanced neural network. This model is end-to-end learnable and it features unbounded memory. Indeed, because of its attention mechanism and associated non-parametric memory, the proposed model allows us to define an attention mechanism over the observation stream unlike recurrent models. We show encouraging resul...
2019
We present relay policy learning, a method for imitation and reinforcement learning that can solve multi-stage, long-horizon robotic tasks. This general and universally-applicable, two-phase approach consists of an imitation learning stage that produces goal-conditioned hierarchical policies, and a reinforcement learning phase that finetunes these policies for task performance. Our method, while not necessarily perfect at imitation learning, is very amenable to further improvement via environment interaction, allowing it to scale to challenging long-horizon tasks. We simplify the long-horizon policy learning problem by using a novel data-relabeling algorithm for learning goal-conditioned hierarchical policies, where the low-level only acts for a fixed number of steps, regardless of the goal achieved. While we rely on demonstration data to bootstrap policy learning, we do not assume access to demonstrations of every specific tasks that is being solved, and instead leverage unstructur...
ArXiv, 2021
Combination of machine learning (for generating machine intelligence), computer vision (for better environment perception), and robotic systems (for controlled environment interaction) motivates this work toward proposing a vision-based learning framework for intelligent robot control as the ultimate goal (vision-based learning robot). This work specifically introduces deep reinforcement learning as the the learning framework, a General-purpose framework for AI (AGI) meaning application-independent and platform-independent. In terms of robot control, this framework is proposing specifically a high-level control architecture independent of the low-level control, meaning these two required level of control can be developed separately from each other. In this aspect, the high-level control creates the required intelligence for the control of the platform using the recorded low-level controlling data from that same platform generated by a trainer. The recorded low-level controlling data...
Loading Preview
Sorry, preview is currently unavailable. You can download the paper by clicking the button above.
2016 23rd International Conference on Pattern Recognition (ICPR), 2016
arXiv (Cornell University), 2022
arXiv (Cornell University), 2020
Proceedings of the AAAI Conference on Artificial Intelligence
Neural Computing and Applications
Applied Sciences, 2020
arXiv (Cornell University), 2021
2018 IEEE International Conference on Robotics and Automation (ICRA)
2021 IEEE International Conference on Robotics and Automation (ICRA), 2021
Proceedings of the Twenty-Eighth International Joint Conference on Artificial Intelligence, 2019
IEEE Robotics and Automation Letters
ArXiv, 2015
arXiv (Cornell University), 2022
Proceedings of the 30th ACM International Conference on Information & Knowledge Management
2020 25th International Conference on Pattern Recognition (ICPR), 2021