Academia.edu no longer supports Internet Explorer.
To browse Academia.edu and the wider internet faster and more securely, please take a few seconds to upgrade your browser.
2021, Microorganisms
The ribosome is the universal catalyst for protein synthesis. Despite extensive studies, the diversity of structures and functions of this ribonucleoprotein is yet to be fully understood. Deciphering the biogenesis of the ribosome in a step-by-step manner revealed that this complexity is achieved through a plethora of effectors involved in the maturation and assembly of ribosomal RNAs and proteins. Conserved from bacteria to eukaryotes, double-stranded specific RNase III enzymes play a large role in the regulation of gene expression and the processing of ribosomal RNAs. In this review, we describe the canonical role of RNase III in the biogenesis of the ribosome comparing conserved and unique features from bacteria to eukaryotes. Furthermore, we report additional roles in ribosome biogenesis re-enforcing the importance of RNase III.
Despite having been identified first, their greater degree of complexity has resulted in our understanding of eukaryotic ribosomes lagging behind that of their bacterial and archaeal counterparts. A much more complicated biogenesis program results in ribosomes that are structurally, biochemically, and functionally more complex. However, recent advances in molecular genetics and structural biology are helping to reveal the intricacies of the eukaryotic ribosome and to address many longstanding questions regarding its many roles in the regulation of gene expression.
Iubmb Life, 2004
In eukaryotes nearly 500 rRNAs, ribosomal proteins, snoRNAs and trans-acting factors contribute to ribosome biogenesis. After more than 30 years of intense research, the incredible complexities of nucleolar function are revealed but details often remain unclear. Here we review this progress and the many intriguing questions which remain. IUBMB Life, 56: 457-465, 2004
International Journal of Molecular Sciences
Energetically speaking, ribosome biogenesis is by far the most costly process of the cell and, therefore, must be highly regulated in order to avoid unnecessary energy expenditure. Not only must ribosomal RNA (rRNA) synthesis, ribosomal protein (RP) transcription, translation, and nuclear import, as well as ribosome assembly, be tightly controlled, these events must be coordinated with other cellular events, such as cell division and differentiation. In addition, ribosome biogenesis must respond rapidly to environmental cues mediated by internal and cell surface receptors, or stress (oxidative stress, DNA damage, amino acid depletion, etc.). This review examines some of the well-studied pathways known to control ribosome biogenesis (PI3K-AKT-mTOR, RB-p53, MYC) and how they may interact with some of the less well studied pathways (eIF2α kinase and RNA editing/splicing) in higher eukaryotes to regulate ribosome biogenesis, assembly, and protein translation in a dynamic manner.
Experimental Cell Research, 2004
AATF is a central regulator of the cellular outcome upon p53 activation, a finding that has primarily been attributed to its function as a transcription factor. Recent data showed that AATF is essential for ribosome biogenesis and plays a role in rRNA maturation. AATF has been implicated to fulfil this role through direct interaction with rRNA and was identified in several RNA-interactome capture experiments. Here, we provide a first comprehensive analysis of the RNA bound by AATF using CLIP-sequencing. Interestingly, this approach shows predominant binding of the 45S pre-ribosomal RNA precursor molecules. Furthermore, AATF binds to mRNAs encoding for ribosome biogenesis factors as well as snoRNAs. These findings are complemented by an in-depth analysis of the protein interactome of AATF containing a large set of proteins known to play a role in rRNA maturation with an emphasis on the protein-RNA-complexes known to be required for the generation of the small ribosomal subunit (SSU). In line with this finding, the binding sites of AATF within the 45S rRNA precursor localize in close proximity to the SSU cleavage sites. Consequently, our multilayer analysis of the protein-RNA interactome of AATF reveals this protein to be an important hub for protein and RNA interactions involved in ribosome biogenesis.
Scientific Reports, 2016
Ribonuclease III (RNase III) is a conserved, gene-regulatory bacterial endonuclease that cleaves doublehelical structures in diverse coding and noncoding RNAs. RNase III is subject to multiple levels of control, reflective of its global regulatory functions. Escherichia coli (Ec) RNase III catalytic activity is known to increase during bacteriophage T7 infection, reflecting the expression of the phage-encoded protein kinase, T7PK. However, the mechanism of catalytic enhancement is unknown. This study shows that Ec-RNase III is phosphorylated on serine in vitro by purified T7PK, and identifies the targets as Ser33 and Ser34 in the N-terminal catalytic domain. Kinetic experiments reveal a 5-fold increase in k cat and a 1.4-fold decrease in K m following phosphorylation, providing a 7.4-fold increase in catalytic efficiency. Phosphorylation does not change the rate of substrate cleavage under single-turnover conditions, indicating that phosphorylation enhances product release, which also is the rate-limiting step in the steady-state. Molecular dynamics simulations provide a mechanism for facilitated product release, in which the Ser33 phosphomonoester forms a salt bridge with the Arg95 guanidinium group, thereby weakening RNase III engagement of product. The simulations also show why glutamic acid substitution at either serine does not confer enhancement, thus underscoring the specific requirement for a phosphomonoester. RNA maturation and decay pathways are fundamentally involved in gene expression and regulation in bacterial cells, and are defined by the coordinated action of endoribonucleases and exoribonucleases. The nucleases act in conjunction with other factors, including small noncoding RNAs, and are subject to multiple levels of regulation in response to stress and other external cues 1-3. As such, ribonucleases provide central points of control over post-transcriptional network function. Ribonuclease regulation of RNA function, and the mechanisms of action of ribonuclease regulators are not well understood, but are receiving increased scrutiny as potential points of drug intervention 4,5. Ribonuclease III is a conserved bacterial endonuclease that site-specifically cleaves double-stranded(ds) structures in diverse cellular, plasmid and phage RNAs 6,7. The RNase III polypeptide (~220 amino acids) consists of an N-terminal catalytic domain [RIIID; ~150 amino acids (aa)] and a C-terminal dsRNA-binding domain (dsRBD; ~65 aa) joined by a short (10 aa) flexible linker. The active form of the enzyme is a homodimer, with a functionally independent catalytic site in each subunit and two dsRBDs that assist in substrate binding. The catalytic sites employ Mg 2+ ions to hydrolyze phosphodiesters, providing products with two-nucleotide, 3′-overhangs and 5′-phosphomonoester, 3′-hydroxyl termini 6,7. A primary substrate for RNase III is the ~5500 nt transcript of the rRNA operons, containing the 16S, 23S and 5S rRNAs, with the enzyme acting co-transcriptionally to provide the immediate precursors to the mature rRNAs 8. RNase III also can determine mRNA half-life by catalyzing the rate-limiting cleavage step in the decay pathway 9-11. Double-helical structures that are formed by binding of small noncoding RNAs (sRNAs) provide RNase III targets, and regulate mRNA translation and/or stability 12,13. The diversity of RNase III targets and the multiple actions of the enzyme in conjunction with sRNAs and other factors underscore the global regulatory function of RNase III 6,7,14 .
Wiley Interdisciplinary Reviews: RNA, 2013
Double-stranded(ds) RNA has diverse roles in gene expression and regulation, host defense, and genome surveillance in bacterial and eukaryotic cells. A central aspect of dsRNA function is its selective recognition and cleavage by members of the ribonuclease III (RNase III) family of divalent-metal-iondependent phosphodiesterases. The processing of dsRNA by RNase III family members is an essential step in the maturation and decay of coding and noncoding RNAs, including miRNAs and siRNAs. RNase III, as first purified from Escherichia coli, has served as a biochemically well-characterized prototype, and other bacterial orthologs provided the first structural information. RNase III family members share a unique fold (RNase III domain) that can dimerize to form a structure that binds dsRNA and cleaves phosphodiesters on each strand, providing the characteristic 2 nt, 3 -overhang product ends. Ongoing studies are uncovering the functions of additional domains, including, inter alia, the dsRNA-binding and PAZ domains that cooperate with the RNase III domain to select target sites, regulate activity, confer processivity, and support the recognition of structurally diverse substrates. RNase III enzymes function in multicomponent assemblies that are regulated by diverse inputs, and at least one RNase III-related polypeptide can function as a noncatalytic, dsRNA-binding protein. This review summarizes the current knowledge of the mechanisms of catalysis and target site selection of RNase III family members, and also addresses less well understood aspects of these enzymes and their interactions with dsRNA.
Nucleic acids research, 2014
At equilibrium, empty ribosomes freely transit between the rotated and un-rotated states. In the cell, the binding of two translation elongation factors to the same general region of the ribosome stabilizes one state over the other. These stabilized states are resolved by expenditure of energy in the form of GTP hydrolysis. A prior study employing mutants of a late assembling peripheral ribosomal protein suggested that ribosome rotational status determines its affinity for elongation factors, and hence translational fidelity and gene expression. Here, mutants of the early assembling integral ribosomal protein uL2 are used to test the generality of this hypothesis. rRNA structure probing analyses reveal that mutations in the uL2 B7b bridge region shift the equilibrium toward the rotated state, propagating rRNA structural changes to all of the functional centers of ribosome. Structural disequilibrium unbalances ribosome biochemically: rotated ribosomes favor binding of the eEF2 transl...
International Journal of Molecular Sciences
According to the classic ribosome model, developed in the 1960s and 1970s, its only function is to translate the four-letter nucleic acid code into the 20 amino acid peptide-code, while polymerizing amino acids into peptides with the help of a large complement of tRNAs and translation factors that cycle on and off the ribosome [...]
RNA Biology, 2004
© 2 0 0 4 L a n d e s B i o s c i e n c e . D o N o t D i s t r i b u t e [RNA Biology 1:1, e56-e62, EPUB Ahead of Print: ACKNOWLEDGEMENTS We would like to thank Reed Wickner for the gift of the original mak8-1 strain,
WIREs RNA, 2010
The small subunit (SSU) processome is a 2.2‐MDa ribonucleoprotein complex involved in the processing, assembly, and maturation of the SSU of eukaryotic ribosomes. The identities of many of the factors involved in SSU biogenesis have been elucidated over the past 40 years. However, as our understanding increases, so do the number of questions about the nature of this complicated process. Cataloging the components is the first step toward understanding the molecular workings of a system. This review will focus on how identifying components of ribosome biogenesis has led to the knowledge of how these factors, protein and RNA alike, associate with one another into subcomplexes, with a concentration on the small ribosomal subunit. We will also explore how this knowledge of subcomplex assembly has informed our understanding of the workings of the ribosome synthesis system as a whole. WIREs RNA 2011 2 1–21 DOI: 10.1002/wrna.57This article is categorized under: RNA Interactions with Protein...
RNA biology, 2016
rRNAs are extensively modified during their transcription and subsequent maturation in the nucleolus, nucleus and cytoplasm. RNA modifications, which are installed either by snoRNA-guided or by stand-alone enzymes, generally stabilize the structure of the ribosome. However, they also cluster at functionally important sites of the ribosome, such as the peptidyltransferase center and the decoding site, where they facilitate efficient and accurate protein synthesis. The recent identification of sites of substoichiometric 2'-O-methylation and pseudouridylation has overturned the notion that all rRNA modifications are constitutively present on ribosomes, highlighting nucleotide modifications as an important source of ribosomal heterogeneity. While the mechanisms regulating partial modification and the functions of specialized ribosomes are largely unknown, changes in the rRNA modification pattern have been observed in response to environmental changes, during development, and in dise...
Microbial Cell, 2017
The synthesis of cytoplasmic eukaryotic ribosomes is an extraordinarily energy-demanding cellular activity that occurs progressively from the nucleolus to the cytoplasm. In the nucleolus, precursor rRNAs associate with a myriad of transacting factors and some ribosomal proteins to form preribosomal particles. These factors include snoRNPs, nucleases, ATPases, GTPases, RNA helicases, and a vast list of proteins with no predicted enzymatic activity. Their coordinate activity orchestrates in a spatiotemporal manner the modification and processing of precursor rRNAs, the rearrangement reactions required for the formation of productive RNA folding intermediates, the ordered assembly of the ribosomal proteins, and the export of pre-ribosomal particles to the cytoplasm; thus, providing speed, directionality and accuracy to the overall process of formation of translation-competent ribosomes. Here, we review a particular class of transacting factors known as "placeholders". Placeholder factors temporarily bind selected ribosomal sites until these have achieved a structural context that is appropriate for exchanging the placeholder with another site-specific binding factor. By this strategy, placeholders sterically prevent premature recruitment of subsequently binding factors, premature formation of structures, avoid possible folding traps, and act as molecular clocks that supervise the correct progression of pre-ribosomal particles into functional ribosomal subunits. We summarize the current understanding of those factors that delay the assembly of distinct ribosomal proteins or subsequently bind key sites in pre-ribosomal particles. We also discuss recurrent examples of RNA-protein and protein-protein mimicry between rRNAs and/or factors, which have clear functional implications for the ribosome biogenesis pathway.
Methods in enzymology, 2012
In eukaryotes, ribosome biogenesis involves the nucleolar transcription and processing of pre-ribosomal RNA molecules (pre-rRNA) in a complex pathway requiring the participation of myriad protein and ribonucleoprotein factors. Through efforts aimed at categorizing and characterizing these factors, at least 20 RNA helicases have been shown to interact with or participate in the activities of the major ribosome biogenesis complexes. Unfortunately, little is known about the enzymatic properties of most of these helicases, and less is known about their roles in ribosome biogenesis and pre-rRNA maturation. This chapter presents approaches for characterizing RNA helicases involved in ribosome biogenesis. Included are methods for depletion of specific protein targets, with standard protocols for assaying the typical ribosome biogenesis defects that may result. Procedures and rationales for mutagenic studies of target proteins are discussed, as well as several approaches for identifying pro...
BMC Genomics, 2002
Background: Members of the ribonuclease III superfamily of double-stranded(ds)-RNA-specific endoribonucleases participate in diverse RNA maturation and decay pathways in eukaryotic and prokaryotic cells. A human RNase III orthologue has been implicated in ribosomal RNA maturation. To better understand the structure and mechanism of mammalian RNase III and its involvement in RNA metabolism we determined the cDNA structure, chromosomal location, and expression patterns of mouse RNase III.
BMC Microbiology, 2014
Background: In this study we employed the TAP tag purification method coupled with mass spectrometry analysis to identify proteins that co-purify with Escherichia coli RNase R during exponential growth and after temperature downshift. Results: Our initial results suggested that RNase R can interact with bacterial ribosomes. We subsequently confirmed this result using sucrose gradient ribosome profiling joined with western blot analysis. We found that RNase R co-migrates with the single 30S ribosomal subunits. Independent data involving RNase R in the rRNA quality control process allowed us to hypothesize that the RNase R connection with ribosomes has an important physiological role. Conclusions: This study leads us to conclude that RNase R can interact with ribosomal proteins and that this interaction may be a result of this enzyme involvement in the ribosome quality control.
Journal of Peptide Science, 2009
Ribosomes translate the genetic code into proteins in all living cells with extremely high efficiency, owing to their inherent flexibility and to their spectacular architecture. During the last 6 decades, extensive effort has been made to elucidate the molecular mechanisms associated with their function, and a quantum jump has been made in recent years, once the three dimensional structures of ribosomes and their functional complexes have been determined. These illuminated key issues in ribosome function, confirmed various biochemical, genetic, and medical findings, and revealed mechanistic details beyond previous expectation, thus leading to conceptual revolutions, and turning old myths into actual facts.
Current opinion in cell biology, 2002
The past year has seen dramatic changes in our understanding of ribosome synthesis, fuelled largely by advances in proteomic analysis. It is now possible to outline the pathway of ribosome assembly, which is highly dynamic and involves a remarkable separation of the factors involved in the synthesis of the 40S and 60S ribosomal subunits. Around 140 identified, non-ribosomal proteins are currently implicated in post-transcriptional ribosome synthesis in yeast.
International Journal of Molecular Sciences, 2019
Translation is one of the final steps that regulate gene expression. The ribosome is the effector of translation through to its role in mRNA decoding and protein synthesis. Many mechanisms have been extensively described accounting for translational regulation. However it emerged only recently that ribosomes themselves could contribute to this regulation. Indeed, though it is well-known that the translational efficiency of the cell is linked to ribosome abundance, studies recently demonstrated that the composition of the ribosome could alter translation of specific mRNAs. Evidences suggest that according to the status, environment, development, or pathological conditions, cells produce different populations of ribosomes which differ in their ribosomal protein and/or RNA composition. Those observations gave rise to the concept of “specialized ribosomes”, which proposes that a unique ribosome composition determines the translational activity of this ribosome. The current review will p...
Loading Preview
Sorry, preview is currently unavailable. You can download the paper by clicking the button above.