Academia.edu no longer supports Internet Explorer.
To browse Academia.edu and the wider internet faster and more securely, please take a few seconds to upgrade your browser.
2005
…
17 pages
1 file
We give a simple and efficient construction of a verifiable random function (VRF) on bilinear groups. Our construction is direct. In contrast to prior VRF constructions [14,15], it avoids using an inefficient Goldreich-Levin transformation, thereby saving several factors in security. Our proofs of security are based on a decisional bilinear Diffie-Hellman inversion assumption, which seems reasonable given current state of knowledge. For small message spaces, our VRF’s proofs and keys have constant size. By utilizing a collision-resistant hash function, our VRF can also be used with arbitrary message spaces. We show that our scheme can be instantiated with an elliptic group of very reasonable size. Furthermore, it can be made distributed and proactive.
2004
We propose a group signature scheme with constant-size public key and signature length that does not require trapdoor. So system parameters can be shared by multiple groups belonging to different organizations. The scheme is provably secure in the formal model recently proposed by Bellare, Shi and Zhang (BSZ04), using random oracle model, Decisional Bilinear Diffie-Hellman and Strong Diffie-Hellman assumptions. We give a more efficient variant scheme and prove its security in a formal model which is a modification of BSZ04 model and has a weaker anonymity requirement. Both schemes are very efficient and the sizes of signatures are approximately one half and one third, respectively, of the sizes of the well-known ACJT00 scheme. We also use the schemes to construct a traceable signature scheme.
Security in Communication Networks - Lecture Notes in Computer Science, 2005
We present a realization of the transitive signature scheme based on the algebraic properties of bilinear group pairs. The scheme is proven secure, i.e. transitively unforgeable under adaptive chosen message attack, assuming hardness of the computational co-Diffie-Hellman problem in bilinear group pairs and the security of the underlying standard signature scheme under known message attack. Our scheme mostly conforms to previously designed schemes of Micali-Rivest and Bellare-Neven in structure; yet there are two contributions: firstly, we take advantage of bilinear group pairs which were previously used by Boneh, Lynn, and Shacham to build short signature schemes. Secondly, we show that a slight modification in previous definitions of the transitive signature relaxes the security requirement for the underlying standard signature from being secure under chosen message attack to being secure under known message attack; thus shorter and more efficient signatures can be chosen for the underlying standard signature. These two facts eventually yield to short transitive signatures with respect to both node and edge signature size.
SIAM Journal on Computing, 2012
Non-interactive zero-knowledge proofs and non-interactive witnessindistinguishable proofs have played a significant role in the theory of cryptography. However, lack of efficiency has prevented them from being used in practice. One of the roots of this inefficiency is that non-interactive zeroknowledge proofs have been constructed for general NP-complete languages such as Circuit Satisfiability, causing an expensive blowup in the size of the statement when reducing it to a circuit. The contribution of this paper is a general methodology for constructing very simple and efficient non-interactive zero-knowledge proofs and non-interactive witness-indistinguishable proofs that work directly for groups with a bilinear map, without needing a reduction to Circuit Satisfiability. Groups with bilinear maps have enjoyed tremendous success in the field of cryptography in recent years and have been used to construct a plethora of protocols. This paper provides non-interactive witness-indistinguishable proofs and non-interactive zero-knowledge proofs that can be used in connection with these protocols. Our goal is to spread the use of non-interactive cryptographic proofs from mainly theoretical purposes to the large class of practical cryptographic protocols based on bilinear groups.
2005
We provide a construction for a group signature scheme that is provably secure in a universally composable framework, within the standard model with trusted parameters. Our proposed scheme is fairly simple and its efficiency falls within small factors of the most efficient group signature schemes with provable security in any model (including random oracles). Security of our constructions require new cryptographic assumptions, namely the Strong LRSW, EDH, and Strong SXDH assumptions. Evidence for any assumption we introduce is provided by proving hardness in the generic group model.
Lecture Notes in Computer Science, 2014
In this paper we introduce new primitives to authenticate computation on data expressed as elements in (cryptographic) groups. As for the case of homomorphic authenticators, our primitives allow to verify the correctness of the computation without having to know of the original data set. More precisely, our contributions are twofold. First, we introduce the notion of linearly homomorphic authenticated encryption with public verifiability and show how to instantiate this primitive (in the random oracle model) to support Paillier's ciphertexts. This immediately yields a very simple and efficient (publicly) verifiable computation mechanism for encrypted (outsourced) data based on Paillier's cryptosystem. As a second result, we show how to construct linearly homomorphic signature schemes to sign elements in bilinear groups (LHSG for short). Such type of signatures are very similar to (linearly homomorphic) structure preserving ones, but they allow for more flexibility, as the signature is explicitly allowed to contain components which are not group elements. In this sense our contributions are as follows. First we show a very simple construction of LHSG that is secure against weak random message attack (RMA). Next we give evidence that RMA secure LHSG are interesting on their own right by showing applications in the context of on-line/off-line homomorphic and network coding signatures. This notably provides what seems to be the first instantiations of homomorphic signatures achieving on-line/off-line efficiency trade-offs. Finally, we present a generic transform that converts RMA-secure LHSG into ones that achieve full security guarantees.
International Journal of Information and Computer Security, 2008
In this paper, we describe a new cryptographic primitive called (One-Way) Signature Chaining. Signature chaining is essentially a method of generating a chain of signatures on the same message by different users. Each signature acts as a "link" of the chain. The one-way-ness implies that the chaining process is one-way in the sense that more links can be easily added to the chain. However, it is computationally infeasible to remove any intermediate links without removing all the links. The signatures so created are called chain signatures (CS). We give precise definitions of chain signatures and discuss some applications in trust transfer. We then present a practical construction of a CS scheme that is secure (in the random oracle model) under the Computational Diffie-Hellman (CDH) assumption in bilinear maps.
Advances in Information Security and Assurance, 2009
Aggregate signatures provide bandwidth-saving aggregation of ordinary signatures. We present the first unrestricted instantiation without random oracles, based on the Boneh-Silverberg signature scheme. Moreover, our construction yields a multisignature scheme where a single message is signed by a number of signers. Our second result is an application to verifiably encrypted signatures. There, signers encrypt their signature under the public key of a trusted third party and output a proof that the signature is inside. Upon dispute between signer and verifier, the trusted third party is able to recover the signature. These schemes are provably secure in the standard model.
2005
We introduce a new undeniable signature scheme which is existentially unforgeable and anonymous under chosen message attacks in the standard model. The scheme is an embedding of Boneh and Boyen’s recent short signature scheme in a group where the decisional Diffie-Hellman problem is assumed to be difficult. The anonymity of our scheme relies on a decisional variant of the strong Diffie-Hellman assumption, while its unforgeability relies on the strong Diffie-Hellman assumption.
Wireless Personal Communications, 2010
In a (t, n)-threshold multi-secret sharing scheme, several secrets are shared among n participants in such a way that any t (or more) of them can reconstruct the secrets while a group of (t -1) can not obtain any information. Therefore, when such schemes are used to distribute sensitive information over a network, fault tolerance property is achieved since even if nt of the nodes go out of function, the remaining t nodes suffice to recover the information. In 2009, Wang et al. proposed a verifiable (t, n)-threshold multi-secret sharing scheme (WTS) based on elliptic curves in which the secrets can change periodically [Wireless Pers. Commun., Springer-Verlage,
2006
We propose a short traceable signature scheme based on bilinear pairings. Traceable signatures, introduced by Kiayias, Tsiounis and Yung (KTY), support an extended set of fairness mechanisms (mechanisms for anonymity management and revocation) when compared with the traditional group signatures. Designing short signatures based on the power of pairing has been a current activity of cryptographic research, and is especially needed for long constructions like that of traceable signatures. The size of a signature in our scheme is less than one third of the size in the KTY scheme and about 40% of the size of the pairing based traceable signature (which has been the shortest till today). The security of our scheme is based on the Strong Diffie-Hellman assumption and the Decision Linear Diffie-Hellman assumption. We prove the security of our system in random oracle model using the security model given by KTY.
Loading Preview
Sorry, preview is currently unavailable. You can download the paper by clicking the button above.
International Journal of Network Security, 2015
Int. J. Netw. Secur., 2019
International Conferenceon Cryptology in Vietnam, 2005
Lecture Notes in Computer Science, 2005
Lecture Notes in Computer Science, 2006
International Journal of Information Security, 2011
Advances in Cryptology — EUROCRYPT 2000, 2000
International Journal of Communication Systems, 2013
Lecture Notes in Computer Science, 2003
Advances in Cryptology – ASIACRYPT 2020, 2020