Academia.edu no longer supports Internet Explorer.
To browse Academia.edu and the wider internet faster and more securely, please take a few seconds to upgrade your browser.
2002, Neuron
…
13 pages
1 file
In vitro studies indicate a role for the LIM kinase family in the regulation of cofilin phosphorylation and actin dynamics. In addition, abnormal expression of LIMK-1 is associated with Williams syndrome, a mental disorder with profound deficits in visuospatial cognition. However, the in vivo function of this family of kinases remains elusive. Using LIMK-1 knockout mice, we demonstrate a significant role for LIMK-1 in vivo in regulating cofilin and the actin cytoskeleton. Furthermore, we show that the knockout mice exhibited significant abnormalities in spine morphology and in synaptic function, including enhanced hippocampal long-term potentiation. The knockout mice also showed altered fear responses and spatial learning. These results indicate that LIMK-1 plays a critical role in dendritic spine morphogenesis and brain function.
FEBS letters, 2015
LIM kinase 1 (LIMK1) and LIM kinase 2 (LIMK2) regulate actin dynamics by phosphorylating cofilin. In this review, we outline studies that have shown an involvement of LIMKs in neuronal function and we detail some of the pathways and molecular mechanisms involving LIMKs in neurodevelopment and synaptic plasticity. We also review the involvement of LIMKs in neuronal diseases and emphasize the differences in the regulation of LIMKs expression and mode of action. We finally present the existence of a cofilin-independent pathway also involved in neuronal function. A better understanding of the differences between both LIMKs and of the precise molecular mechanisms involved in their mode of action and regulation is now required to improve our understanding of the physiopathology of the neuronal diseases associated with LIMKs.
Developmental Biology, 2006
Lim Kinase (Limk) belongs to a phylogenetically conserved family of serine/threonine kinases, which have been shown to be potent regulators of the actin cytoskeleton. Despite accumulating evidence of its biochemical actions, its in vivo function has remained poorly understood. The association of the Limk1 gene with Williams Syndrome indicates that proteins of this family play a role in the nervous system. To unravel the cellular and molecular functions of Limk, we have either knocked out or activated the Limk gene in Drosophila. At the neuromuscular junction, loss of Limk leads to enlarged terminals, while increasing the activity of Limk leads to stunted terminals with fewer synaptic boutons. In the antennal lobe, loss of Limk abolishes the ability of p21-activated kinase (Pak) to alter glomerular development. In contrast, increase in Limk function leads to ectopic glomeruli, a phenotype suppressible by the coexpression of a hyperactive Cofilin gene. These results establish Limk as a critical regulator of Cofilin function and synapse development, and a downstream effector of Pak in vivo.
Journal of Neuroscience, 2006
We have shown recently that fA-induced dystrophy requires the activation of focal adhesion proteins and the formation of aberrant focal adhesion structures, suggesting the activation of a mechanism of maladaptative plasticity in AD. Focal adhesions are actin-based structures that provide a structural link between the extracellular matrix and the cytoskeleton. To gain additional insight in the molecular mechanism of neuronal degeneration in AD, here we explored the involvement of LIM kinase 1 (LIMK1), actin-depolymerizing factor (ADF), and cofilin in A-induced dystrophy. ADF/cofilin are actin-binding proteins that play a central role in actin filament dynamics, and LIMK1 is the kinase that phosphorylates and thereby inhibits ADF/cofilin. Our data indicate that treatment of hippocampal neurons with fA increases the level of Ser3-phosphorylated ADF/cofilin and Thr508-phosphorylated LIMK1 (P-LIMK1), accompanied by a dramatic remodeling of actin filaments, neuritic dystrophy, and neuronal cell death. A synthetic peptide, S3 peptide, which acts as a specific competitor for ADF/cofilin phosphorylation by LIMK1, inhibited fA-induced ADF/cofilin phosphorylation, preventing actin filament remodeling and neuronal degeneration, indicating the involvement of LIMK1 in A-induced neuronal degeneration in vitro. Immunofluorescence analysis of AD brain showed a significant increase in the number of P-LIMK1-positive neurons in areas affected with AD pathology. P-LIMK1-positive neurons also showed early signs of AD pathology, such as intracellular A and pretangle phosphorylated tau. Thus, LIMK1 activation may play a key role in AD pathology.
Journal of Neuroscience, 2006
Deposition of fibrillar amyloid  (fA) plays a critical role in Alzheimer's disease (AD). We have shown recently that fA-induced dystrophy requires the activation of focal adhesion proteins and the formation of aberrant focal adhesion structures, suggesting the activation of a mechanism of maladaptative plasticity in AD. Focal adhesions are actin-based structures that provide a structural link between the extracellular matrix and the cytoskeleton. To gain additional insight in the molecular mechanism of neuronal degeneration in AD, here we explored the involvement of LIM kinase 1 (LIMK1), actin-depolymerizing factor (ADF), and cofilin in A-induced dystrophy. ADF/cofilin are actin-binding proteins that play a central role in actin filament dynamics, and LIMK1 is the kinase that phosphorylates and thereby inhibits ADF/cofilin. Our data indicate that treatment of hippocampal neurons with fA increases the level of Ser3-phosphorylated ADF/cofilin and Thr508-phosphorylated LIMK1 (P-LIMK1), accompanied by a dramatic remodeling of actin filaments, neuritic dystrophy, and neuronal cell death. A synthetic peptide, S3 peptide, which acts as a specific competitor for ADF/cofilin phosphorylation by LIMK1, inhibited fA-induced ADF/cofilin phosphorylation, preventing actin filament remodeling and neuronal degeneration, indicating the involvement of LIMK1 in A-induced neuronal degeneration in vitro. Immunofluorescence analysis of AD brain showed a significant increase in the number of P-LIMK1-positive neurons in areas affected with AD pathology. P-LIMK1-positive neurons also showed early signs of AD pathology, such as intracellular A and pretangle phosphorylated tau. Thus, LIMK1 activation may play a key role in AD pathology.
Frontiers in Molecular Neuroscience, 2019
Dendritic growth and branching are highly regulated processes and are essential for establishing proper neuronal connectivity. There is a critical phase of early dendrite development when these are heavily regulated by external cues such as trophic factors. Brain-derived neurotrophic factor (BDNF) is a major trophic factor known to enhance dendrite growth in cortical neurons, but the molecular underpinnings of this response are not completely understood. We have identified that BDNF induced translational regulation is an important mechanism governing dendrite development in cultured rat cortical neurons. We show that BDNF treatment for 1 h in young neurons leads to translational up-regulation of an important actin regulatory protein LIM domain kinase 1 (Limk1), increasing its level locally in the dendrites. Limk1 is a member of serine/threonine (Ser/Thr) family kinases downstream of the Rho-GTPase pathway. BDNF induced increase in Limk1 levels leads to increased phosphorylation of its target protein cofilin1. We observed that these changes are maintained for long durations of up to 48 h and are mediating increase in number of primary dendrites and total dendrite length. Thus, we show that BDNF induced protein synthesis leads to fine-tuning of the actin cytoskeletal reassembly and thereby mediate dendrite development.
EMBO reports, 2009
Proper regulation of the cAMP-dependent protein kinase (protein kinase A, PKA) is necessary for cellular homeostasis, and dysregulation of this kinase is crucial in human disease. Mouse embryonic fibroblasts (MEFs) lacking the PKA regulatory subunit Prkar1a show altered cell morphology and enhanced migration. At the molecular level, these cells showed increased phosphorylation of cofilin, a crucial modulator of actin dynamics, and these changes could be mimicked by stimulating the activity of PKA. Previous studies of cofilin have shown that it is phosphorylated primarily by the LIM domain kinases Limk1 and Limk2, which are under the control of the Rho GTPases and their downstream effectors. In Prkar1a À/À MEFs, neither Rho nor Rac was activated; rather, we showed that PKA could directly phosphorylate Limk1 and thus enhance the phosphorylation of cofilin. These data indicate that PKA is crucial in cell morphology and migration through its ability to modulate directly the activity of LIM kinase.
Molecular Biology of The Cell, 2004
In this study, we examined the subcellular distribution and functions of LIMK1 in developing neurons. Confocal microscopy, subcellular fractionation, and expression of several epitope-tagged LIMK1 constructs revealed that LIMK1 is enriched in the Golgi apparatus and growth cones, with the LIM domain required for Golgi localization and the PDZ domain for its presence at neuritic tips. Overexpression of wild-type LIMK1 suppresses the formation of trans-Golgi derived tubules, and prevents cytochalasin D-induced Golgi fragmentation, whereas that of a kinase-defective mutant has the opposite effect. Transfection of wild-type LIMK1 accelerates axon formation and enhances the accumulation of Par3/Par6, insulin-like growth factor (IGF)1 receptors, and neural cell adhesion molecule (NCAM) at growth cones, while inhibiting the Golgi export of synaptophysin-containing vesicles. These effects were dependent on the Golgi localization of LIMK1, paralleled by an increase in cofilin phosphorylation and phalloidin staining in the region of the Golgi apparatus, and prevented by coexpression of constitutive active cofilin. The long-term overexpression of LIMK1 produces growth cone collapse and axon retraction, an effect that is dependent on its growth cone localization. Together, our results suggest an important role for LIMK1 in axon formation that is related with its ability to regulate Golgi dynamics, membrane traffic, and actin cytoskeletal organization.
HAL (Le Centre pour la Communication Scientifique Directe), 2018
LIMK2-1, a new isoform of Human LIMK2, regulates actin cytoskeleton remodeling via a different signaling pathway than that of its two homologs, LIMK2a and LIMK2b
Molecular Neurobiology, 2017
Long-lasting changes in dendritic spines provide a physical correlate for memory formation and persistence. LIM kinase (LIMK) plays a critical role in orchestrating dendritic actin dynamics during memory processing, since it is the convergent downstream target of both the Rac1/PAK and RhoA/ROCK pathways that in turn induce cofilin phosphorylation and prevent depolymerization of actin filaments. Here, using a potent LIMK inhibitor (BMS-5), we investigated the role of LIMK activity in the dorsal hippocampus during contextual fear memory in rats. We first found that post-training administration of BMS-5 impaired memory consolidation in a dose-dependent manner. Inhibiting LIMK before training also disrupted memory acquisition. We then demonstrated that hippocampal LIMK activity seems to be critical for memory retrieval and reconsolidation, since both processes were impaired by BMS-5 treatment. Contextual fear memory extinction, however, was not sensitive to the same treatment. In conclusion, our findings demonstrate that hippocampal LIMK activity plays an important role in memory acquisition, consolidation, retrieval, and reconsolidation during contextual fear conditioning.
Loading Preview
Sorry, preview is currently unavailable. You can download the paper by clicking the button above.
Brain Research, 2011
Journal of Histochemistry & Cytochemistry, 2006
Developmental Biology, 2009
Biochemical and Biophysical Research Communications, 2012
Biochemical and Biophysical Research Communications, 2000
Cerebral cortex (New York, N.Y. : 1991), 2016
The Journal of Neuroscience, 2019
Journal of Neuroscience, 2008