Academia.edu no longer supports Internet Explorer.
To browse Academia.edu and the wider internet faster and more securely, please take a few seconds to upgrade your browser.
2009, Current Vascular Pharmacology
…
35 pages
1 file
The recent failure of candidate drugs like cholesterol ester transfer protein (CETP) and acyl-CoA:cholesterol acyltransferase (ACAT) inhibitors calls for a revised approach for screening anti-atherosclerotic drugs and development of new models of atherosclerosis. For this it is important to understand the mechanism of the disease in a particular model. Models simultaneously showing hyperlipidemia, inflammation and associated complications of diabetes and hypertension will serve the purpose better as they mimic the actual clinical condition. Besides this, analyzing candidate molecules in vivo, in vitro and at various levels of atherosclerosis progression is important. Models based on various cells and process involved in atherosclerosis should be used for screening candidate molecules. The challenge lies in bridging the gap between genetically friendly small animal and human-like bigger animal models. Sequencing of the mouse and human genome, development of a single nucleotide polymorphism (SNP) database and in silico quantitative trait loci (QTL) linkage analysis may enhance the understanding of atherosclerosis and help develop new therapeutic targets.
Arteriosclerosis, …, 2007
Atherosclerosis is a multifactorial highly-complex disease with numerous etiologies that work synergistically to promote lesion development. The ability to develop preventive and ameliorative treatments will depend on animal models that mimic the human subject metabolically and pathophysiologically and will develop lesions comparable to those in humans. The mouse is the most useful, economic, and valid model for studying atherosclerosis and exploring effective therapeutic approaches. Among the most widely used mouse models for atherosclerosis are apolipoprotein E-deficient (ApoE Ϫ/Ϫ ) and LDL receptor-deficient (LDLr Ϫ/Ϫ ) mice. An up-and-coming model is the ApoE*3Leiden (E3L) transgenic mouse. Here, we review studies that have explored how and to what extent these mice respond to compounds directed at treatment of the risk factors hypercholesterolemia, hypertriglyceridemia, hypertension, and inflammation. An important outcome of this survey is that the different models used may differ markedly from one another in their response to a specific experimental manipulation. The choice of a model is therefore of critical importance and should take into account the risk factor to be studied and the working spectrum of the compounds tested.
The American Journal of Human Genetics, 2005
Susceptibility to atherosclerosis is determined by both environmental and genetic factors. Its genetic determinants have been studied by use of quantitative-trait-locus (QTL) analysis. So far, 21 atherosclerosis QTLs have been identified in the mouse: 7 in a high-fat-diet model only, 9 in a sensitized model (apolipoprotein E-or LDL [lowdensity lipoprotein] receptor-deficient mice) only, and 5 in both models, suggesting that different gene sets operate in each model and that a subset operates in both. Among the 27 human atherosclerosis QTLs reported, 17 (63%) are located in regions homologous (concordant) to mouse QTLs, suggesting that these mouse and human atherosclerosis QTLs have the same underlying genes. Therefore, genes regulating human atherosclerosis will be found most efficiently by first finding their orthologs in concordant mouse QTLs. Novel mouse QTL genes will be found most efficiently by using a combination of the following strategies: identifying QTLs in new crosses performed with previously unused parental strains; inducing mutations in large-scale, high-throughput mutagenesis screens; and using new genomic and bioinformatics tools. Once QTL genes are identified in mice, they can be tested in human association studies for their relevance in human atherosclerotic disease.
International Journal of Molecular Sciences
Atherosclerosis is a multifactorial chronic disease that affects large arteries and may lead to fatal consequences. According to current understanding, inflammation and lipid accumulation are the two key mechanisms of atherosclerosis development. Animal models based on genetically modified mice have been developed to investigate these aspects. One such model is low-density lipoprotein (LDL) receptor knockout (KO) mice (ldlr−/−), which are characterized by a moderate increase of plasma LDL cholesterol levels. Another widely used genetically modified mouse strain is apolipoprotein-E KO mice (apoE−/−) that lacks the primary lipoprotein required for the uptake of lipoproteins through the hepatic receptors, leading to even greater plasma cholesterol increase than in ldlr−/− mice. These and other animal models allowed for conducting genetic studies, such as genome-wide association studies, microarrays, and genotyping methods, which helped identifying more than 100 mutations that contribut...
2007
Atherosclerosis is a progressive disease of the large arteries characterized by lipid deposition, inflammation, cell death and fibrosis and it is the major cause of death in the Western world. In this thesis new and experimental therapies against atherosclerosis are designed and tested. New targets for these therapies were identified by using a mouse model for atherosclerosis, the LDL receptor deficient mouse. We used micro-arrays to compare gene expression from mice with atherosclerosis to control mice and the following targets, all related to leukocyte migration and activation, were identified; CCR5, CXCR3, CD99, IL-16, OX-40 and CD127. Vaccines against CD99, IL-16 and CD127 were designed and tested. Specific antagonists of CCR5 and CXCR3 were used to block these molecules and a specific antibody against OX40 ligand was tested in LDL receptor deficient mice. The effects of these treatment strategies are described in the chapters of this thesis. In conclusion, modulation of leukocy...
PLoS genetics, 2015
Common forms of atherosclerosis involve multiple genetic and environmental factors. While human genome-wide association studies have identified numerous loci contributing to coronary artery disease and its risk factors, these studies are unable to control environmental factors or examine detailed molecular traits in relevant tissues. We now report a study of natural variations contributing to atherosclerosis and related traits in over 100 inbred strains of mice from the Hybrid Mouse Diversity Panel (HMDP). The mice were made hyperlipidemic by transgenic expression of human apolipoprotein E-Leiden (APOE-Leiden) and human cholesteryl ester transfer protein (CETP). The mice were examined for lesion size and morphology as well as plasma lipid, insulin and glucose levels, and blood cell profiles. A subset of mice was studied for plasma levels of metabolites and cytokines. We also measured global transcript levels in aorta and liver. Finally, the uptake of acetylated LDL by macrophages fr...
PLOS Genetics, 2008
Despite the well-documented effects of plasma lipid lowering regimes halting atherosclerosis lesion development and reducing morbidity and mortality of coronary artery disease and stroke, the transcriptional response in the atherosclerotic lesion mediating these beneficial effects has not yet been carefully investigated. We performed transcriptional profiling at 10-week intervals in atherosclerosis-prone mice with human-like hypercholesterolemia and a genetic switch to lower plasma lipoproteins (Ldlr 2/2 Apo 100/100 Mttp flox/flox Mx1-Cre). Atherosclerotic lesions progressed slowly at first, then expanded rapidly, and plateaued after advanced lesions formed. Analysis of lesion expression profiles indicated that accumulation of lipid-poor macrophages reached a point that led to the rapid expansion phase with accelerated foam-cell formation and inflammation, an interpretation supported by lesion histology. Genetic lowering of plasma cholesterol (e.g., lipoproteins) at this point all together prevented the formation of advanced plaques and parallel transcriptional profiling of the atherosclerotic arterial wall identified 37 cholesterol-responsive genes mediating this effect. Validation by siRNAinhibition in macrophages incubated with acetylated-LDL revealed a network of eight cholesterol-responsive atherosclerosis genes regulating cholesterol-ester accumulation. Taken together, we have identified a network of atherosclerosis genes that in response to plasma cholesterol-lowering prevents the formation of advanced plaques. This network should be of interest for the development of novel atherosclerosis therapies.
Saudi pharmaceutical journal : SPJ : the official publication of the Saudi Pharmaceutical Society, 2014
Non-communicable diseases such as cancer, atherosclerosis and diabetes are responsible for major social and health burden as millions of people are dying every year. Out of which, atherosclerosis is the leading cause of deaths worldwide. The lipid abnormality is one of the major modifiable risk factors for atherosclerosis. Both genetic and environmental components are associated with the development of atherosclerotic plaques. Immune and inflammatory mediators have a complex role in the initiation and progression of atherosclerosis. Understanding of all these processes will help to invent a range of new biomarkers and novel treatment modalities targeting various cellular events in acute and chronic inflammation that are accountable for atherosclerosis. Several biochemical pathways, receptors and enzymes are involved in the development of atherosclerosis that would be possible targets for improving strategies for disease diagnosis and management. Earlier anti-inflammatory or lipid-lo...
Herz, 2002
Research in atherosclerosis is a good example how helpful different disciplines such as clinicians, epidemiologists and basic science can collaborate. In recent years our knowledge on cellular and subcellular mechanisms involved in initiation and progress of atherosclerosis has expanded due to the shared knowledge of different disciplines and thanks to new technologies in molecular biology.
Atherogenesis, 2012
This evidence was delivered by a new technique -gene targeting, for the invention of which Mario R. Capecchi (Italy), Martin J. Evans (United Kingdom) and Oliver Smithies (USA)
Journal of Applied Genetics, 2013
Atherosclerosis is the most common cause of death globally. It is a complex disease involving morphological and cellular changes in vascular walls. Studying molecular mechanism of the disease is hindered by disease complexity and lack of robust noninvasive diagnostics in human. Mouse models are the most popular animal models that allow researchers to study the mechanism of disease progression. In this review we discuss the advantage and development of mouse as a model for atherosclerotic research. Along with commonly used models, this review discusses strains that are used to study the role of two critical processes associated with the disease-lipid metabolism and inflammation.
Loading Preview
Sorry, preview is currently unavailable. You can download the paper by clicking the button above.
Journal of Diseases, 2018
Expert Opinion on Therapeutic Patents, 2001
Current Drug Targets, 2008
Journal of physiology and pharmacology : an official journal of the Polish Physiological Society, 2004
Acta biochimica et biophysica Sinica, 2006
Advances in Bioinformatics, 2012
Pathophysiology of Haemostasis and Thrombosis, 2007
Atherosclerosis, 2007
Current pharmaceutical design, 2017
BMC Genomics, 2009
Circulation Research, 2007
Proceedings of the National Academy of Sciences, 1987
Journal of Clinical & Experimental Cardiology, 2011